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INTRODUCTION

This application note is developed based on low latency
design. It provides an algorithm, which is designed to
use the SPI/I’C™ interrupts, to achieve the required
communication and enable optimum processor usage.
The algorithm is developed based on the PIC18 Master
Synchronous Serial Port (MSSP) module with external
Serial Peripheral Interface (SPI) EEPROMs and 1’C
EEPROMs, respectively. The algorithm uses an
interrupt driven approach.

OVERVIEW OF LOW LATENCY
DESIGN

The low latency design relies on the communication
interrupts provided by the PIC® MCUs to extract maxi-
mum performance from the microcontroller. This
design can be better understood by first investigating
the conventional approach and its disadvantages in the
following sections.

Existing Conventional Approach

The conventional approach is to write blocking routines
that do not relinquish control when they are awaiting an
external event. The blocking routines are merely polling
for flags to get triggered by the hardware. Therefore,
the microcontroller is always busy with execution while
waiting for a flag to get triggered.

In SPI mode, the microcontroller is always busy
monitoring the Buffer Full (BF) flag/status bit of the
MSSP Status (SSPSTAT) register during communica-
tions between the PIC MCU and external serial
EEPROM . In 12C mode, the BF status bit gets cleared
during transmission, and gets set during reception.

Disadvantages of Conventional Approach

External EEPROM chips, connected via SPI or 1°c,
tend to consume a lot of microcontroller throughput to
communicate. The routines accessing the EEPROM
will have to wait until the communication is reliably
completed. During this period, the microcontroller
remains idle when it can actually be performing other
tasks. The applications developed using the conven-
tional approach do not allow the microcontroller to
perform other tasks parallely. As this approach requires
continuous and dedicated monitoring of the task, it
degrades the performance and throughput of the
microcontroller by wasting clock cycles.

LOW LATENCY DESIGN

The limitations of the conventional approach can be
overcome by following the low latency approach. As
the MSSP module comprises both SPI and 12C modes,
the microcontroller can operate in one of the two
modes (either in SPI or I2C). There is no need to poll
the BF status bit continuously as this design uses the
interrupt flag (i.e., MSSP Interrupt Flag bit — SSPIF)
provided by the MSSP hardware module.

Note: The MSSP module in PIC18 can be
configured to use either the SPI or 1°C
module.

As soon as the transmission/reception is completed,
the SSPIF interrupt flag gets triggered by the hardware
and vectors to the Interrupt Service Routine (ISR). To
achieve this, the MSSP module interrupt must be
enabled along with the global interrupt enable. Thus,
communication happens in the background inside the
ISR. This, in turn, reduces the load on the
microcontroller and enables other tasks to run in a
pseudo parallel control flow.

The low latency design is comprised of the following
software stacks:
» SPI Software Stack — Comprises Application
Layer, EEPROM Driver Layer, SPI Driver Layer
and Hardware Layer
« I12C Software Stack — Comprises Application
Layer, EEPROM Driver Layer, 12C Driver Layer
and Hardware Layer
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IMPLEMENTATION FIGURE 1: SPI SOFTWARE STACK

SPI Software Stack

In this implementation, the MSSP module is configured
as SPI and is interfaced with Microchip’s 25XXX series
SPI serial EEPROM device. EEPROM Driver Layer

Application Layer

Figure 1 displays the layer-wise SPI software stack
implementation.

Figure 2 displays the hardware schematic for the inter- SPI Driver Layer

face between the PIC18 MCU and Microchip’s 25XXX
series devices. The schematic provides the necessary .
connections between the microcontroller and the tested Hardware Layer: SDO, SDI, SCK and SS Lines
serial EEPROM; the software is written assuming these

connections. The WP and HOLD pins are tied to Vcc,
since these are not used in the software stack.

FIGURE 2: CIRCUIT FOR PIC18 MCU AND 25XXX SERIES DEVICE
MSSP (SPI)
sS
SDO
SCK
PIC18 MCU soil
Vcc
N—y
Mm—— CS[]1 8[]vce
L so[]2 E 7[] HOLD
——WP[]3 N 6] sck
IVSSE 4 5[] sl

DS01243A-page 2 © 2008 Microchip Technology Inc.




AN1243

I2C Software Stack

The MSSP module is configured as 12C and is interfaced
with Microchip’s 24XXX series’ I°C serial EEPROM
device.

Figure 3 displays the hardware schematic for the
interface between the PIC18 MCU and Microchip’s
24XXX series devices. The schematic provides the
connections necessary between the microcontroller

FIGURE 3:

and the serial EEPROM; the software is developed
assuming these connections. As the SDA and SCL
pins are open-drain terminals, they require pull-up
resistors to Vcc (typically, 10 kQ for 100 kHz and 2 kQ
for 400 kHz and 1 MHz). The WP pin is tied to ground
as the write-protect feature is not used in the software
stack provided.
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Figure 4 displays the layer-wise 1°C software stack
implementation.

FIGURE 4: I2C™ SOFTWARE STACK
Application Layer
EEPROM Driver Layer
12C™ Driver Layer
Hardware Layer: SCL and SDA Lines
FIRMWARE

* SPI Module — The source code consists of three
files (mai n. c, ee_drv. c and spi _drv. c),
which fit into the corresponding layers based on
file operation.

« 1C Module — The source code consists of three
files (mai n. ¢, ee_drv. candi 2c_drv. c¢), which
fit into the corresponding layers based on file
operation.

APPLICATION LAYER

The application layer (mai n. c), in both SPI and 12c
modes, consists of API calls to initialize, write, read and
verify the SPI and 12C EEPROM devices. The main API
callsare EE Init(),EE Wite(), EE_Read() and
EE Veri fy().The othertwo APIs associated with the
main APIs are EE_St at us() and EE_Task(). API
EE Status() returns the current status of the
EEPROM operation. APl EE_Task() updates the
EEPROM with respect to the operation of the main API
and the current status of EEPROM.

EEPROM DRIVER LAYER

The application APIs are defined in the EEPROM driver
layer (ee_drv.c). APIl, EE_Init (), initializes the
EEPROM, EE_W it e() writes the requested number
of bytes to the given EEPROM address, EE_Read()
reads the requested number of bytes from the given
EEPROM address and EE Verify() verifies the
number of bytes against the contents of EEPROM at
the given address. API, EE_St at us(), returns the
current status of the EEPROM operation and must be
called before each read/write to ensure that the driver
is free. It must be called after every read to ensure that
the data has been successfully copied to the user’s
space.

API, EE_Task(), is implemented as the main (high-
level) EEPROM driver. The driver runs through
different states to get the SPI/I?°C EEPROM read/write
done using the low-level SPI/I2C driver.

¢ SPI Driver

The SPI driver chops the EEPROM writes into
page sizes. The driver waits until the EEPROM
chip is ready between consecutive page writes by
reading the Write-In-Process (WIP) bit of the
status register in the EEPROM. The WIP bit
indicates whether the EEPROM is busy with an
internal write operation. The driver resets the
EEPROM in case of errors.

« 12C Driver

The I2C driver chops the EEPROM writes into page
sizes. The driver waits until the EEPROM chip is
ready between consecutive page writes by polling
the EEPROM device. The Acknowledgement
(ACK) polling between page writes is required to
determine whether the external EEPROM device is
busy with its internal write operation. The driver also
resets the EEPROM device in case of errors.

DS01243A-page 4
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LOW-LEVEL DRIVER LAYER HARDWARE LAYER

» SPI Driver Layer (spi _drv. c) — It initializes the * SPI Module — Whenever the MSSP module is
SPI module (SPI _I ni t ()), disables the module enabled and configured for SPI mode inthe
and re-enables it in case of errors device, it configures the SCK, SDO, SDI and SS
(Reset _EE_Chi p() ), and implements the low- pins as serial port pins. These pins are used by
level SPI driver. The low-level SPI driver is a the MSSP hardware module during SPI
semi-generic state machine implemented as an communications.
ISR, which goes through the necessary states to « 12C Module — Whenever the MSSP module is
construct an SPI frame. In case the interrupts are enabled and configured for 12C Master mode in the
shared among different modules, this routine device, it configures the SCL and SDA pins as
must be called when the root ISR spots that serial port pins. In Master mode, the SCL and SDA
SSPIF is set. lines are used by the MSSP hardware during 12C

« 12C Driver Layer (i 2c_dr v. c) — It initializes the communications.
12C module (1 2C I ni t () ), disables the module
and re-enables it in case of errors
(Reset _EE_Chi p() ), and implements the low- LATENCY DETAILS
level 12C driver. Like the SPI driver, the low-level  SPI Driver — Table 1 provides the latency details
I2C driver is a semi-generic state machine based on an oscillator frequency of 10 MHz for
implemented as an ISR, which goes through the 1-byte write, read and verify.

necessary states to construct an I2C frame. If the
interrupts are shared among different modules,
this routine must be called when the root ISR
spots that SSPIF is set.

TABLE 1: LATENCY DETAILS FOR SPI DRIVER

Fosc = 10 MHz
API PerformanceTime (us) Perf(lclgggrxi(tar;ﬂ;ni()us) Comments

EE Init() 18 4.4 Main API

EE_Task() 11.2 2.8 Associated API
EE Wite() 296 74 Main API

EE Task() 20 5 Associated API

EE_Read() 168 42 Main API

EE_Task() 12.6 3.2 Associated API
EE Verify() 180 46 Main API

EE_Task() 12.8 3.2 Associated API
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« 12C Driver — Table 2 provides the latency details
based on an oscillator frequency of 10 MHz for

1-byte write, read and verify.

TABLE 2: LATENCY DETAILS FOR I>’C™ DRIVER

Fosc = 10 MHz
API Performance Time (us) Perf(lo:rorzgrzl\(l:i?r'll'lgi()us) Comments

EE Init() 15.6 3.9 Main API

EE Task() 28.8 7.2 Associated API
EE Wite() 94 23.2 Main API

EE_Task() 11.6 2.9 Associated API

EE_Read() 94 23.6 Main API

EE Task() 10.8 2.7 Associated API
EE Verify() 110 27.2 Main API

EE Task() 10.8 2.7 Associated API
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API DETAILS
EE Init()
Initializes the MSSP module and the external EEPROM chip.
Syntax
void EE Init (void)
Parameters
None

Return Values
None

Example
voi d mai n(voi d)

{

/!l Function to initialize the MSSP and external EEPROM
EE Init();
while (EE_Status() == EE_BUSY)

{
EE_Task();

/1 Perform any other task here

}

EE Wite()
Writes the requested number of bytes to the given EEPROM address.

Syntax
void EE Wite(unsigned int address, unsigned char *data, unsigned int nunbytes)

Parameter

addr ess — Address on EEPROM chip to write to
dat a — Location from where data must be copied
nunbyt es — Number of bytes to be written

Return Values
None

Example

unsi gned i nt Address = 0x0000;
unsi gned int Length = 6
unsi gned char WiteString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, Ox6};

voi d mai n(voi d)

{
/!l Function to wite data i nto EEPROM
EE Wite(Address, WiteString, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Perform any other task here
}
}
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EE_Read()
Reads the requested number of bytes from the given EEPROM address.

Syntax
voi d EE_Read(unsi gned char *data, unsigned int address, unsigned int nunbytes)

Parameter

dat a — Location where the read data will be copied
addr ess — Address on EEPROM chip to read from
nunmbyt es — Number of bytes to read

Return Values

None

Example

unsi gned int Address = 0x0000;
unsigned int Length = 6

unsi gned char ReadStri ng[ 6] = {0,0,0,0,0,0};
voi d mai n(voi d)
{
/1 Function to read data from EEPROM
EE_Read(ReadString, Address, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Performany other task here
}
}
EE Verify()

Verifies contents of a buffer against the contents of the EEPROM.

Syntax
voi d EE Verify(unsigned char *data, unsigned int address, unsigned int nunbytes)

Parameter

dat a — Location of data bytes to verify against EEPROM contents
addr ess — Address on EEPROM chip to verify from

nunmbyt es — Number of bytes to verify

Return Values

None

Example

unsi gned i nt Address = 0x0000;
unsigned int Length = 6
unsi gned char VerifyString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6} ;

voi d mai n(voi d)

{
EE Verify(VerifyString, Address, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Perform any other task here
}
}
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EE Status()

Returns the current status of the EEPROM operation.

Syntax
EE_Resul t _Type EE_Status (void)

Parameter
None

Return Values
Returns current state of EEPROM module.
Example:

unsi gned int Address = 0x0000;

unsigned int Length = 6

unsi gned char WiteString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, Ox6};

typedef enum { EE_BUSY, EE_ERROR, EE_VERI FY_FAI L, EE_FREE} EE_Resul t _Type;

voi d mai n(voi d)

{
EE Wite(Address, WiteString, Length);
while (EE_Status() == EE BUSY)
{
EE_Task();
/1 Perform any other task here
}
}
EE Task()

This API runs through different states to get the SPI/I°C EEPROM reads/writes done using the low-level SPI/I°C
driver, respectively.

Syntax

voi d EE_Task (void)

Parameter

None

Return Values
None

Example

unsi gned int Address = 0x0000;
unsi gned int Length = 6
unsi gned char WiteString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, Ox6};

voi d mai n(voi d)

{
EE Wite(Address, WiteString, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Performany other task here
}
}
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SPI Software Stack Control Flow

See Figure 5 for EEPROM driver control flow and
Figure 6 for SPI driver control flow.

FIGURE 5:

EEPROM DRIVER CONTROL FLOW
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FIGURE 6:

SPI DRIVER CONTROL FLOW
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I2C Software Stack Control Flow

See Figure 7 for EEPROM driver control flow and
Figure 8 for SPI driver control flow.

FIGURE 7: EEPROM DRIVER CONTROL FLOW
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FIGURE 8: I2C™ DRIVER CONTROL FLOW
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CONCLUSION

This application note outlines an algorithm, which uses
MSSP module interrupts available in the PIC18 family of
devices, to overcome the limitations of the conventional
approach by following the low latency design.
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APPENDIX A: LIBRARY DIRECTORY

TABLE A-1: LIBRARY DIRECTORY ORGANIZATION

Directory Content
Low_Lat _DATAEE_sol n:
12C sol ution A Low Latency Data EEPROM Solution for °C™ EEPROM Chips
SPI _sol ution A Low Latency Data EEPROM Solution for SPI EEPROM Chips
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NOTES:
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