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INTRODUCTION
This application note is developed based on low latency
design. It provides an algorithm, which is designed to
use the SPI/I2C™ interrupts, to achieve the required
communication and enable optimum processor usage.
The algorithm is developed based on the PIC18 Master
Synchronous Serial Port (MSSP) module with external
Serial Peripheral Interface (SPI) EEPROMs and I2C
EEPROMs, respectively. The algorithm uses an
interrupt driven approach.

OVERVIEW OF LOW LATENCY 
DESIGN
The low latency design relies on the communication
interrupts provided by the PIC® MCUs to extract maxi-
mum performance from the microcontroller. This
design can be better understood by first investigating
the conventional approach and its disadvantages in the
following sections. 

Existing Conventional Approach
The conventional approach is to write blocking routines
that do not relinquish control when they are awaiting an
external event. The blocking routines are merely polling
for flags to get triggered by the hardware. Therefore,
the microcontroller is always busy with execution while
waiting for a flag to get triggered.

In SPI mode, the microcontroller is always busy
monitoring the Buffer Full (BF) flag/status bit of the
MSSP Status (SSPSTAT) register during communica-
tions between the PIC MCU and external serial
EEPROMs. In I2C mode, the BF status bit gets cleared
during transmission, and gets set during reception.

Disadvantages of Conventional Approach
External EEPROM chips, connected via SPI or I2C,
tend to consume a lot of microcontroller throughput to
communicate. The routines accessing the EEPROM
will have to wait until the communication is reliably
completed. During this period, the microcontroller
remains idle when it can actually be performing other
tasks. The applications developed using the conven-
tional approach do not allow the microcontroller to
perform other tasks parallely. As this approach requires
continuous and dedicated monitoring of the task, it
degrades the performance and throughput of the
microcontroller by wasting clock cycles.

LOW LATENCY DESIGN
The limitations of the conventional approach can be
overcome by following the low latency approach. As
the MSSP module comprises both SPI and I2C modes,
the microcontroller can operate in one of the two
modes (either in SPI or I2C). There is no need to poll
the BF status bit continuously as this design uses the
interrupt flag (i.e., MSSP Interrupt Flag bit – SSPIF)
provided by the MSSP hardware module. 

As soon as the transmission/reception is completed,
the SSPIF interrupt flag gets triggered by the hardware
and vectors to the Interrupt Service Routine (ISR). To
achieve this, the MSSP module interrupt must be
enabled along with the global interrupt enable. Thus,
communication happens in the background inside the
ISR. This, in turn, reduces the load on the
microcontroller and enables other tasks to run in a
pseudo parallel control flow. 

The low latency design is comprised of the following
software stacks:

• SPI Software Stack – Comprises Application 
Layer, EEPROM Driver Layer, SPI Driver Layer 
and Hardware Layer

• I2C Software Stack – Comprises Application 
Layer, EEPROM Driver Layer, I2C Driver Layer 
and Hardware Layer
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Note: The MSSP module in PIC18 can be
configured to use either the SPI or I2C
module.
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IMPLEMENTATION

SPI Software Stack
In this implementation, the MSSP module is configured
as SPI and is interfaced with Microchip’s 25XXX series
SPI serial EEPROM device.

Figure 1 displays the layer-wise SPI software stack
implementation.

Figure 2 displays the hardware schematic for the inter-
face between the PIC18 MCU and Microchip’s 25XXX
series devices. The schematic provides the necessary
connections between the microcontroller and the tested
serial EEPROM; the software is written assuming these
connections. The WP and HOLD pins are tied to VCC,
since these are not used in the software stack.

FIGURE 1: SPI SOFTWARE STACK

FIGURE 2: CIRCUIT FOR PIC18 MCU AND 25XXX SERIES DEVICE
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I2C Software Stack
The MSSP module is configured as I2C and is interfaced
with Microchip’s 24XXX series’ I2C serial EEPROM
device. 

Figure 3 displays the hardware schematic for the
interface between the PIC18 MCU and Microchip’s
24XXX series devices. The schematic provides the
connections necessary between the microcontroller

and the serial EEPROM; the software is developed
assuming these connections. As the SDA and SCL
pins are open-drain terminals, they require pull-up
resistors to VCC (typically, 10 kΩ for 100 kHz and 2 kΩ
for 400 kHz and 1 MHz). The WP pin is tied to ground
as the write-protect feature is not used in the software
stack provided.

FIGURE 3: CIRCUIT FOR PIC18 MCU AND 24XXX SERIES DEVICE
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Figure 4 displays the layer-wise I2C software stack
implementation.

FIGURE 4: I2C™ SOFTWARE STACK

FIRMWARE
• SPI Module – The source code consists of three 

files (main.c, ee_drv.c and spi_drv.c), 
which fit into the corresponding layers based on 
file operation.

• I2C Module – The source code consists of three 
files (main.c, ee_drv.c and i2c_drv.c), which 
fit into the corresponding layers based on file 
operation.

APPLICATION LAYER
The application layer (main.c), in both SPI and I2C
modes, consists of API calls to initialize, write, read and
verify the SPI and I2C EEPROM devices. The main API
calls are EE_Init(), EE_Write(), EE_Read() and
EE_Verify(). The other two APIs associated with the
main APIs are EE_Status() and EE_Task(). API
EE_Status() returns the current status of the
EEPROM operation. API EE_Task() updates the
EEPROM with respect to the operation of the main API
and the current status of EEPROM.

EEPROM DRIVER LAYER
The application APIs are defined in the EEPROM driver
layer (ee_drv.c). API, EE_Init(), initializes the
EEPROM, EE_Write() writes the requested number
of bytes to the given EEPROM address, EE_Read()
reads the requested number of bytes from the given
EEPROM address and EE_Verify() verifies the
number of bytes against the contents of EEPROM at
the given address. API, EE_Status(), returns the
current status of the EEPROM operation and must be
called before each read/write to ensure that the driver
is free. It must be called after every read to ensure that
the data has been successfully copied to the user’s
space.

API, EE_Task(), is implemented as the main (high-
level) EEPROM driver. The driver runs through
different states to get the SPI/I2C EEPROM read/write
done using the low-level SPI/I2C driver.

• SPI Driver

The SPI driver chops the EEPROM writes into
page sizes. The driver waits until the EEPROM
chip is ready between consecutive page writes by
reading the Write-In-Process (WIP) bit of the
status register in the EEPROM. The WIP bit
indicates whether the EEPROM is busy with an
internal write operation. The driver resets the
EEPROM in case of errors.

• I2C Driver

The I2C driver chops the EEPROM writes into page
sizes. The driver waits until the EEPROM chip is
ready between consecutive page writes by polling
the EEPROM device. The Acknowledgement
(ACK) polling between page writes is required to
determine whether the external EEPROM device is
busy with its internal write operation. The driver also
resets the EEPROM device in case of errors.

     Application Layer 

EEPROM Driver Layer

I2C™ Driver Layer

     Hardware Layer: SCL and SDA Lines
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LOW-LEVEL DRIVER LAYER
• SPI Driver Layer (spi_drv.c) – It initializes the 

SPI module (SPI_Init()), disables the module 
and re-enables it in case of errors 
(Reset_EE_Chip()), and implements the low-
level SPI driver. The low-level SPI driver is a 
semi-generic state machine implemented as an 
ISR, which goes through the necessary states to 
construct an SPI frame. In case the interrupts are 
shared among different modules, this routine 
must be called when the root ISR spots that 
SSPIF is set.

• I2C Driver Layer (i2c_drv.c) – It initializes the 
I2C module (I2C_Init()), disables the module 
and re-enables it in case of errors 
(Reset_EE_Chip()), and implements the low-
level I2C driver. Like the SPI driver, the low-level 
I2C driver is a semi-generic state machine 
implemented as an ISR, which goes through the 
necessary states to construct an I2C frame. If the 
interrupts are shared among different modules, 
this routine must be called when the root ISR 
spots that SSPIF is set.

HARDWARE LAYER
• SPI Module – Whenever the MSSP module is 

enabled and configured for SPI mode in the 
device, it configures the SCK, SDO, SDI and SS 
pins as serial port pins. These pins are used by 
the MSSP hardware module during SPI 
communications.

• I2C Module – Whenever the MSSP module is 
enabled and configured for I2C Master mode in the 
device, it configures the SCL and SDA pins as 
serial port pins. In Master mode, the SCL and SDA 
lines are used by the MSSP hardware during I2C 
communications.

LATENCY DETAILS
• SPI Driver – Table 1 provides the latency details 

based on an oscillator frequency of 10 MHz for 
1-byte write, read and verify.

TABLE 1: LATENCY DETAILS FOR SPI DRIVER
FOSC = 10 MHz

API Performance Time (μs)                Performance Time (μs)                
(FOSC with PLL) Comments

EE_Init() 18 4.4 Main API
EE_Task() 11.2 2.8 Associated API
EE_Write() 296 74 Main API
EE_Task() 20 5 Associated API
EE_Read() 168 42 Main API
EE_Task() 12.6 3.2 Associated API

EE_Verify() 180 46 Main API
EE_Task() 12.8 3.2 Associated API
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• I2C Driver – Table 2 provides the latency details 
based on an oscillator frequency of 10 MHz for 
1-byte write, read and verify.

TABLE 2: LATENCY DETAILS FOR I2C™ DRIVER
FOSC = 10 MHz

API Performance Time (μs)                Performance Time (μs)                
(FOSC with PLL) Comments

EE_Init() 15.6 3.9 Main API
EE_Task() 28.8 7.2 Associated API
EE_Write() 94 23.2 Main API
EE_Task() 11.6 2.9 Associated API
EE_Read() 94 23.6 Main API
EE_Task() 10.8 2.7 Associated API

EE_Verify() 110 27.2 Main API
EE_Task() 10.8 2.7 Associated API



© 2008 Microchip Technology Inc. DS01243A-page 7

AN1243

API DETAILS

EE_Init()

Initializes the MSSP module and the external EEPROM chip.

Syntax
void EE_Init (void)

Parameters
None

Return Values
None

Example
void main(void)
{

// Function to initialize the MSSP and external EEPROM
EE_Init();

 while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

EE_Write()

Writes the requested number of bytes to the given EEPROM address.

Syntax
   void EE_Write(unsigned int address, unsigned char *data, unsigned int numbytes)

Parameter
address – Address on EEPROM chip to write to

data – Location from where data must be copied

numbytes – Number of bytes to be written

Return Values
None

Example
unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char WriteString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};

void main(void)
{

// Function to write data into EEPROM
EE_Write(Address, WriteString, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}
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EE_Read()

Reads the requested number of bytes from the given EEPROM address.

Syntax
void EE_Read(unsigned char *data, unsigned int address, unsigned int numbytes)

Parameter
data – Location where the read data will be copied
address – Address on EEPROM chip to read from
numbytes – Number of bytes to read

Return Values
None

Example
unsigned int Address = 0x0000;  
unsigned int Length = 6
unsigned char ReadString[6]   = {0,0,0,0,0,0};

void main(void)
{

// Function to read data from EEPROM
EE_Read(ReadString, Address, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

EE_Verify()
Verifies contents of a buffer against the contents of the EEPROM.

Syntax
   void EE_Verify(unsigned char *data, unsigned int address, unsigned int numbytes)

Parameter
data – Location of data bytes to verify against EEPROM contents
address – Address on EEPROM chip to verify from
numbytes – Number of bytes to verify

Return Values
None

Example
unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char VerifyString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};

void main(void)
{

EE_Verify(VerifyString, Address, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}
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EE_Status()

Returns the current status of the EEPROM operation.

Syntax
EE_Result_Type EE_Status (void)

Parameter
None

Return Values
Returns current state of EEPROM module.

Example:

unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char WriteString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};
typedef enum {EE_BUSY,EE_ERROR,EE_VERIFY_FAIL,EE_FREE}EE_Result_Type;

void main(void)
{

EE_Write(Address, WriteString, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

EE_Task()

This API runs through different states to get the SPI/I2C EEPROM reads/writes done using the low-level SPI/I2C
driver, respectively.

Syntax
   void EE_Task (void)

Parameter
None

Return Values
None

Example
unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char WriteString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};

void main(void)
{

EE_Write(Address, WriteString, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}
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SPI Software Stack Control Flow
See Figure 5 for EEPROM driver control flow and
Figure 6 for SPI driver control flow.

FIGURE 5: EEPROM DRIVER CONTROL FLOW
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FIGURE 6: SPI DRIVER CONTROL FLOW
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I2C Software Stack Control Flow
See Figure 7 for EEPROM driver control flow and
Figure 8 for SPI driver control flow.

FIGURE 7: EEPROM DRIVER CONTROL FLOW

EE_READ

No

Yes

EE_WRITE

EE_Init()

EE_POLL

Number of bytes
left to write > 0

EE_CLEAN_UP

EE_CLEAN_UP

E
E
_
R
e
a
d
(
)

E
E
_
V
e
r
i
f
y
(
)

an
d

EE_CHIP_INIT

Through Multiple
Calls to EE_Task()

E
E
_
W
r
i
t
e
(
)



© 2008 Microchip Technology Inc. DS01243A-page 13

AN1243
FIGURE 8: I2C™ DRIVER CONTROL FLOW
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CONCLUSION
This application note outlines an algorithm, which uses
MSSP module interrupts available in the PIC18 family of
devices, to overcome the limitations of the conventional
approach by following the low latency design.
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APPENDIX A: LIBRARY DIRECTORY

TABLE A-1: LIBRARY DIRECTORY ORGANIZATION
Directory Content

Low_Lat_DATAEE_soln:

I2C_solution A Low Latency Data EEPROM Solution for I2C™ EEPROM Chips
SPI_solution A Low Latency Data EEPROM Solution for SPI EEPROM Chips
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NOTES:
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