MICROCHIP

AN1243

Low Latency Driver to Access External EEPROM Using
PIC18 Family Devices

Authors: Obul Reddy and Ganesh Krishna S.M
Microchip Technology Inc.

INTRODUCTION

This application note is developed based on low latency
design. It provides an algorithm, which is designed to
use the SPI/I’C™ interrupts, to achieve the required
communication and enable optimum processor usage.
The algorithm is developed based on the PIC18 Master
Synchronous Serial Port (MSSP) module with external
Serial Peripheral Interface (SPI) EEPROMs and 1’C
EEPROMs, respectively. The algorithm uses an
interrupt driven approach.

OVERVIEW OF LOW LATENCY
DESIGN

The low latency design relies on the communication
interrupts provided by the PIC® MCUs to extract maxi-
mum performance from the microcontroller. This
design can be better understood by first investigating
the conventional approach and its disadvantages in the
following sections.

Existing Conventional Approach

The conventional approach is to write blocking routines
that do not relinquish control when they are awaiting an
external event. The blocking routines are merely polling
for flags to get triggered by the hardware. Therefore,
the microcontroller is always busy with execution while
waiting for a flag to get triggered.

In SPI mode, the microcontroller is always busy
monitoring the Buffer Full (BF) flag/status bit of the
MSSP Status (SSPSTAT) register during communica-
tions between the PIC MCU and external serial
EEPROM . In 12C mode, the BF status bit gets cleared
during transmission, and gets set during reception.

Disadvantages of Conventional Approach

External EEPROM chips, connected via SPI or 1°c,
tend to consume a lot of microcontroller throughput to
communicate. The routines accessing the EEPROM
will have to wait until the communication is reliably
completed. During this period, the microcontroller
remains idle when it can actually be performing other
tasks. The applications developed using the conven-
tional approach do not allow the microcontroller to
perform other tasks parallely. As this approach requires
continuous and dedicated monitoring of the task, it
degrades the performance and throughput of the
microcontroller by wasting clock cycles.

LOW LATENCY DESIGN

The limitations of the conventional approach can be
overcome by following the low latency approach. As
the MSSP module comprises both SPI and 12C modes,
the microcontroller can operate in one of the two
modes (either in SPI or I2C). There is no need to poll
the BF status bit continuously as this design uses the
interrupt flag (i.e., MSSP Interrupt Flag bit — SSPIF)
provided by the MSSP hardware module.

Note: The MSSP module in PIC18 can be
configured to use either the SPI or 1°C
module.

As soon as the transmission/reception is completed,
the SSPIF interrupt flag gets triggered by the hardware
and vectors to the Interrupt Service Routine (ISR). To
achieve this, the MSSP module interrupt must be
enabled along with the global interrupt enable. Thus,
communication happens in the background inside the
ISR. This, in turn, reduces the load on the
microcontroller and enables other tasks to run in a
pseudo parallel control flow.

The low latency design is comprised of the following
software stacks:
» SPI Software Stack — Comprises Application
Layer, EEPROM Driver Layer, SPI Driver Layer
and Hardware Layer
« I12C Software Stack — Comprises Application
Layer, EEPROM Driver Layer, 12C Driver Layer
and Hardware Layer

© 2008 Microchip Technology Inc.

DS01243A-page 1

AN1243

IMPLEMENTATION FIGURE 1: SPI SOFTWARE STACK

SPI Software Stack

In this implementation, the MSSP module is configured
as SPI and is interfaced with Microchip’s 25XXX series
SPI serial EEPROM device. EEPROM Driver Layer

Application Layer

Figure 1 displays the layer-wise SPI software stack
implementation.

Figure 2 displays the hardware schematic for the inter- SPI Driver Layer

face between the PIC18 MCU and Microchip’s 25XXX
series devices. The schematic provides the necessary .
connections between the microcontroller and the tested Hardware Layer: SDO, SDI, SCK and SS Lines
serial EEPROM; the software is written assuming these

connections. The WP and HOLD pins are tied to Vcc,
since these are not used in the software stack.

FIGURE 2: CIRCUIT FOR PIC18 MCU AND 25XXX SERIES DEVICE
MSSP (SPI)
sS
SDO
SCK
PIC18 MCU soil
Vcc
N—y
Mm—— CS[]1 8[]vce
L so[]2 E 7[] HOLD
——WP[]3 N 6] sck
IVSSE 4 5[] sl

DS01243A-page 2 © 2008 Microchip Technology Inc.

AN1243

I2C Software Stack

The MSSP module is configured as 12C and is interfaced
with Microchip’s 24XXX series’ I°C serial EEPROM
device.

Figure 3 displays the hardware schematic for the
interface between the PIC18 MCU and Microchip’s
24XXX series devices. The schematic provides the
connections necessary between the microcontroller

FIGURE 3:

and the serial EEPROM; the software is developed
assuming these connections. As the SDA and SCL
pins are open-drain terminals, they require pull-up
resistors to Vcc (typically, 10 kQ for 100 kHz and 2 kQ
for 400 kHz and 1 MHz). The WP pin is tied to ground
as the write-protect feature is not used in the software
stack provided.

CIRCUIT FOR PIC18 MCU AND 24XXX SERIES DEVICE

MSSP
(|ZCTM)
PIC18 MCU SDA
scLH
Vcc
N

24XXX
o

[$2]

|]vee

W ——
scL —1 ‘

|] SDA—1

AO[|1 8
Al[]2 7
A2[]3
Vss[] 4

L

© 2008 Microchip Technology Inc.

DS01243A-page 3

AN1243

Figure 4 displays the layer-wise 1°C software stack
implementation.

FIGURE 4: I2C™ SOFTWARE STACK
Application Layer
EEPROM Driver Layer
12C™ Driver Layer
Hardware Layer: SCL and SDA Lines
FIRMWARE

* SPI Module — The source code consists of three
files (mai n. c, ee_drv. c and spi _drv. c),
which fit into the corresponding layers based on
file operation.

« 1C Module — The source code consists of three
files (mai n. ¢, ee_drv. candi 2c_drv. c¢), which
fit into the corresponding layers based on file
operation.

APPLICATION LAYER

The application layer (mai n. c), in both SPI and 12c
modes, consists of API calls to initialize, write, read and
verify the SPI and 12C EEPROM devices. The main API
callsare EE Init(),EE Wite(), EE_Read() and
EE Veri fy().The othertwo APIs associated with the
main APIs are EE_St at us() and EE_Task(). API
EE Status() returns the current status of the
EEPROM operation. APl EE_Task() updates the
EEPROM with respect to the operation of the main API
and the current status of EEPROM.

EEPROM DRIVER LAYER

The application APIs are defined in the EEPROM driver
layer (ee_drv.c). APIl, EE_Init (), initializes the
EEPROM, EE_W it e() writes the requested number
of bytes to the given EEPROM address, EE_Read()
reads the requested number of bytes from the given
EEPROM address and EE Verify() verifies the
number of bytes against the contents of EEPROM at
the given address. API, EE_St at us(), returns the
current status of the EEPROM operation and must be
called before each read/write to ensure that the driver
is free. It must be called after every read to ensure that
the data has been successfully copied to the user’s
space.

API, EE_Task(), is implemented as the main (high-
level) EEPROM driver. The driver runs through
different states to get the SPI/I?°C EEPROM read/write
done using the low-level SPI/I2C driver.

¢ SPI Driver

The SPI driver chops the EEPROM writes into
page sizes. The driver waits until the EEPROM
chip is ready between consecutive page writes by
reading the Write-In-Process (WIP) bit of the
status register in the EEPROM. The WIP bit
indicates whether the EEPROM is busy with an
internal write operation. The driver resets the
EEPROM in case of errors.

« 12C Driver

The I2C driver chops the EEPROM writes into page
sizes. The driver waits until the EEPROM chip is
ready between consecutive page writes by polling
the EEPROM device. The Acknowledgement
(ACK) polling between page writes is required to
determine whether the external EEPROM device is
busy with its internal write operation. The driver also
resets the EEPROM device in case of errors.

DS01243A-page 4

© 2008 Microchip Technology Inc.

AN1243

LOW-LEVEL DRIVER LAYER HARDWARE LAYER

» SPI Driver Layer (spi _drv. c) — It initializes the * SPI Module — Whenever the MSSP module is
SPI module (SPI _I ni t ()), disables the module enabled and configured for SPI mode inthe
and re-enables it in case of errors device, it configures the SCK, SDO, SDI and SS
(Reset _EE_Chi p()), and implements the low- pins as serial port pins. These pins are used by
level SPI driver. The low-level SPI driver is a the MSSP hardware module during SPI
semi-generic state machine implemented as an communications.
ISR, which goes through the necessary states to « 12C Module — Whenever the MSSP module is
construct an SPI frame. In case the interrupts are enabled and configured for 12C Master mode in the
shared among different modules, this routine device, it configures the SCL and SDA pins as
must be called when the root ISR spots that serial port pins. In Master mode, the SCL and SDA
SSPIF is set. lines are used by the MSSP hardware during 12C

« 12C Driver Layer (i 2c_dr v. c) — It initializes the communications.
12C module (1 2C I ni t ()), disables the module
and re-enables it in case of errors
(Reset _EE_Chi p()), and implements the low- LATENCY DETAILS
level 12C driver. Like the SPI driver, the low-level SPI Driver — Table 1 provides the latency details
I2C driver is a semi-generic state machine based on an oscillator frequency of 10 MHz for
implemented as an ISR, which goes through the 1-byte write, read and verify.

necessary states to construct an I2C frame. If the
interrupts are shared among different modules,
this routine must be called when the root ISR
spots that SSPIF is set.

TABLE 1: LATENCY DETAILS FOR SPI DRIVER

Fosc = 10 MHz
API PerformanceTime (us) Perf(lclgggrxi(tar;ﬂ;ni()us) Comments

EE Init() 18 4.4 Main API

EE_Task() 11.2 2.8 Associated API
EE Wite() 296 74 Main API

EE Task() 20 5 Associated API

EE_Read() 168 42 Main API

EE_Task() 12.6 3.2 Associated API
EE Verify() 180 46 Main API

EE_Task() 12.8 3.2 Associated API

© 2008 Microchip Technology Inc. DS01243A-page 5

AN1243

« 12C Driver — Table 2 provides the latency details
based on an oscillator frequency of 10 MHz for

1-byte write, read and verify.

TABLE 2: LATENCY DETAILS FOR I>’C™ DRIVER

Fosc = 10 MHz
API Performance Time (us) Perf(lo:rorzgrzl\(l:i?r'll'lgi()us) Comments

EE Init() 15.6 3.9 Main API

EE Task() 28.8 7.2 Associated API
EE Wite() 94 23.2 Main API

EE_Task() 11.6 2.9 Associated API

EE_Read() 94 23.6 Main API

EE Task() 10.8 2.7 Associated API
EE Verify() 110 27.2 Main API

EE Task() 10.8 2.7 Associated API

DS01243A-page 6

© 2008 Microchip Technology Inc.

AN1243

API DETAILS
EE Init()
Initializes the MSSP module and the external EEPROM chip.
Syntax
void EE Init (void)
Parameters
None

Return Values
None

Example
voi d mai n(voi d)

{

/!l Function to initialize the MSSP and external EEPROM
EE Init();
while (EE_Status() == EE_BUSY)

{
EE_Task();

/1 Perform any other task here

}

EE Wite()
Writes the requested number of bytes to the given EEPROM address.

Syntax
void EE Wite(unsigned int address, unsigned char *data, unsigned int nunbytes)

Parameter

addr ess — Address on EEPROM chip to write to
dat a — Location from where data must be copied
nunbyt es — Number of bytes to be written

Return Values
None

Example

unsi gned i nt Address = 0x0000;
unsi gned int Length = 6
unsi gned char WiteString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, Ox6};

voi d mai n(voi d)

{
/!l Function to wite data i nto EEPROM
EE Wite(Address, WiteString, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Perform any other task here
}
}

© 2008 Microchip Technology Inc. DS01243A-page 7

AN1243

EE_Read()
Reads the requested number of bytes from the given EEPROM address.

Syntax
voi d EE_Read(unsi gned char *data, unsigned int address, unsigned int nunbytes)

Parameter

dat a — Location where the read data will be copied
addr ess — Address on EEPROM chip to read from
nunmbyt es — Number of bytes to read

Return Values

None

Example

unsi gned int Address = 0x0000;
unsigned int Length = 6

unsi gned char ReadStri ng[6] = {0,0,0,0,0,0};
voi d mai n(voi d)
{
/1 Function to read data from EEPROM
EE_Read(ReadString, Address, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Performany other task here
}
}
EE Verify()

Verifies contents of a buffer against the contents of the EEPROM.

Syntax
voi d EE Verify(unsigned char *data, unsigned int address, unsigned int nunbytes)

Parameter

dat a — Location of data bytes to verify against EEPROM contents
addr ess — Address on EEPROM chip to verify from

nunmbyt es — Number of bytes to verify

Return Values

None

Example

unsi gned i nt Address = 0x0000;
unsigned int Length = 6
unsi gned char VerifyString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, 0x6} ;

voi d mai n(voi d)

{
EE Verify(VerifyString, Address, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Perform any other task here
}
}

DS01243A-page 8 © 2008 Microchip Technology Inc.

AN1243

EE Status()

Returns the current status of the EEPROM operation.

Syntax
EE_Resul t _Type EE_Status (void)

Parameter
None

Return Values
Returns current state of EEPROM module.
Example:

unsi gned int Address = 0x0000;

unsigned int Length = 6

unsi gned char WiteString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, Ox6};

typedef enum { EE_BUSY, EE_ERROR, EE_VERI FY_FAI L, EE_FREE} EE_Resul t _Type;

voi d mai n(voi d)

{
EE Wite(Address, WiteString, Length);
while (EE_Status() == EE BUSY)
{
EE_Task();
/1 Perform any other task here
}
}
EE Task()

This API runs through different states to get the SPI/I°C EEPROM reads/writes done using the low-level SPI/I°C
driver, respectively.

Syntax

voi d EE_Task (void)

Parameter

None

Return Values
None

Example

unsi gned int Address = 0x0000;
unsi gned int Length = 6
unsi gned char WiteString[6] = {0x1, 0x2, 0x3, 0x4, 0x5, Ox6};

voi d mai n(voi d)

{
EE Wite(Address, WiteString, Length);
while (EE_Status() == EE_BUSY)
{
EE Task();
/1 Performany other task here
}
}

© 2008 Microchip Technology Inc. DS01243A-page 9

AN1243

SPI Software Stack Control Flow

See Figure 5 for EEPROM driver control flow and
Figure 6 for SPI driver control flow.

FIGURE 5:

EEPROM DRIVER CONTROL FLOW

F_ - - - — — — T
: EE CHP_INIT : EE_Init()
Lo J
____________ -
EE_VRI TE - |
- = — — — — |
| | |
| 8
| Number of bytes Yes s
left to write > O =
w
| -
| |EE7PO_L |
L — _— JNo __ _ |
|
EE_CLEAN_UP |
____________ J
____________ -
EE_READ =
Iz 2
EE
(]
Y |Lu|<u>l
o
EE_CLEAN_UP |
J

Through Multiple
Calls to EE_Task()

DS01243A-page 10

© 2008 Microchip Technology Inc.

AN1243

FIGURE 6:

SPI DRIVER CONTROL FLOW

EE Wite() APIFlow

When ‘WEL_STATE' is in
‘DISABLE_WRITE' Mode

SPI _READ_SP

- - - - - = .1
When ‘WEL_STATE’ Isin
‘ENABL_RITE’ Mode

A

WEL Enabled?

I
I
I
I
_I

A 4

SPI _\WRI TE_HEADER

SPI_\WRI TE_CYCLE

Y

SPI _| DLE_STATE

SPI _WRI TE_HEADER

Y

SPI _READ_CYCLE

SPI _I DLE_STATE

L - — —

________ - — /"7
| SPI _START_COWM |
| |
| L |
| SPI VR TE_HEADER |
| | |
| SPI _READ CYCLE I
| |
| |
| SPI _| DLE_STATE |
L _I

© 2008 Microchip Technology Inc.

DS01243A-page 11

AN1243

I2C Software Stack Control Flow

See Figure 7 for EEPROM driver control flow and
Figure 8 for SPI driver control flow.

FIGURE 7: EEPROM DRIVER CONTROL FLOW
r— - - - — — 1
I EE CHP INT | EE_Init()
| |
L - - .
r - - T — - — — |

I
[
| Through Multiple
| I Calls to EE_Task()
I T
| | Number of bytes ;
I left to write > O |
w
| |t
| | |EE_POLL |
L — —) 1
I I
I I
| EE_CLEAN_UP |
L - - - - - - _ _ |
r— - - - — — — — — — — — hl
I EE_READ I —
| l5_2
it
=y
! Y IUJI gl
I L w
| EE_CLEAN_UP | w
Lo |

DS01243A-page 12 © 2008 Microchip Technology Inc.

AN1243

FIGURE 8: I2C™ DRIVER CONTROL FLOW

EE Wite() API Flow

EE_Read() API Flow

EE Verify() APIFlow

I 2C_START_SENT

| 2C_ WRI TE_HEADER

12C_ WRI TE_CYCLE

/
I 2C_STCP_CONDI TI ON_SENT

I 2C_START_SENT

| 2C_WRI TE_HEADER

Y
| 2C_RESTART_SENT

/
| 2C_READ CYCLE

\4
| 2C_STOP_CONDI TI ON_SENT

I 2C WRI TE_HEADER

Y
| 2C_READ CYCLE

I 2C_| DLE_STATE

© 2008 Microchip Technology Inc.

DS01243A-page 13

AN1243

CONCLUSION

This application note outlines an algorithm, which uses
MSSP module interrupts available in the PIC18 family of
devices, to overcome the limitations of the conventional
approach by following the low latency design.

REFERENCES

« AN1000, “Using the MSSP Module to Interface
SPI Serial EEPROMSs with PIC18 Devices” —
www.microchip.com

* AN989, “Using the MSSP Module to Interface
I12C™ Serial EEPROMSs with PIC18 Devices” —
www.microchip.com

DS01243A-page 14

© 2008 Microchip Technology Inc.

www.microchip.com
www.microchip.com
www.microchip.com
www.microchip.com

AN1243

APPENDIX A: LIBRARY DIRECTORY

TABLE A-1: LIBRARY DIRECTORY ORGANIZATION

Directory Content
Low_Lat _DATAEE_sol n:
12C sol ution A Low Latency Data EEPROM Solution for °C™ EEPROM Chips
SPI _sol ution A Low Latency Data EEPROM Solution for SPI EEPROM Chips

© 2008 Microchip Technology Inc. DS01243A-page 15

AN1243

NOTES:

DS01243A-page 16 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC3? logo, PowerCal, PowerlInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

© 2008 Microchip Technology Inc.

DS01243A-page 17

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/02/08

DS01243A-page 18 © 2008 Microchip Technology Inc.

	Introduction
	Overview of Low Latency Design
	Existing Conventional Approach
	Disadvantages of Conventional Approach

	Low Latency Design
	Implementation
	SPI Software Stack
	FIGURE 1: SPI Software Stack
	FIGURE 2: Circuit for PIC18 MCU and 25XXX Series Device

	I2C Software Stack
	FIGURE 3: Circuit for PIC18 MCU and 24XXX Series Device
	FIGURE 4: I2C™ Software Stack

	Firmware
	Application Layer
	EEPROM Driver Layer
	Low-Level Driver Layer
	Hardware Layer
	Latency Details
	TABLE 1: Latency Details for SPI Driver
	TABLE 2: Latency Details for I2C™ Driver

	API Details
	SPI Software Stack Control Flow
	FIGURE 5: EEPROM Driver Control Flow
	FIGURE 6: SPI Driver Control Flow

	I2C Software Stack Control Flow
	FIGURE 7: EEPROM Driver Control Flow
	FIGURE 8: I2C™ Driver Control Flow

	Conclusion
	References
	Appendix A: Library Directory
	TABLE A-1: Library Directory Organization

	Worldwide Sales and Service

