
© 2008 Microchip Technology Inc. DS01243A-page 1

AN1243

INTRODUCTION
This application note is developed based on low latency
design. It provides an algorithm, which is designed to
use the SPI/I2C™ interrupts, to achieve the required
communication and enable optimum processor usage.
The algorithm is developed based on the PIC18 Master
Synchronous Serial Port (MSSP) module with external
Serial Peripheral Interface (SPI) EEPROMs and I2C
EEPROMs, respectively. The algorithm uses an
interrupt driven approach.

OVERVIEW OF LOW LATENCY
DESIGN
The low latency design relies on the communication
interrupts provided by the PIC® MCUs to extract maxi-
mum performance from the microcontroller. This
design can be better understood by first investigating
the conventional approach and its disadvantages in the
following sections.

Existing Conventional Approach
The conventional approach is to write blocking routines
that do not relinquish control when they are awaiting an
external event. The blocking routines are merely polling
for flags to get triggered by the hardware. Therefore,
the microcontroller is always busy with execution while
waiting for a flag to get triggered.

In SPI mode, the microcontroller is always busy
monitoring the Buffer Full (BF) flag/status bit of the
MSSP Status (SSPSTAT) register during communica-
tions between the PIC MCU and external serial
EEPROMs. In I2C mode, the BF status bit gets cleared
during transmission, and gets set during reception.

Disadvantages of Conventional Approach
External EEPROM chips, connected via SPI or I2C,
tend to consume a lot of microcontroller throughput to
communicate. The routines accessing the EEPROM
will have to wait until the communication is reliably
completed. During this period, the microcontroller
remains idle when it can actually be performing other
tasks. The applications developed using the conven-
tional approach do not allow the microcontroller to
perform other tasks parallely. As this approach requires
continuous and dedicated monitoring of the task, it
degrades the performance and throughput of the
microcontroller by wasting clock cycles.

LOW LATENCY DESIGN
The limitations of the conventional approach can be
overcome by following the low latency approach. As
the MSSP module comprises both SPI and I2C modes,
the microcontroller can operate in one of the two
modes (either in SPI or I2C). There is no need to poll
the BF status bit continuously as this design uses the
interrupt flag (i.e., MSSP Interrupt Flag bit – SSPIF)
provided by the MSSP hardware module.

As soon as the transmission/reception is completed,
the SSPIF interrupt flag gets triggered by the hardware
and vectors to the Interrupt Service Routine (ISR). To
achieve this, the MSSP module interrupt must be
enabled along with the global interrupt enable. Thus,
communication happens in the background inside the
ISR. This, in turn, reduces the load on the
microcontroller and enables other tasks to run in a
pseudo parallel control flow.

The low latency design is comprised of the following
software stacks:

• SPI Software Stack – Comprises Application
Layer, EEPROM Driver Layer, SPI Driver Layer
and Hardware Layer

• I2C Software Stack – Comprises Application
Layer, EEPROM Driver Layer, I2C Driver Layer
and Hardware Layer

Authors: Obul Reddy and Ganesh Krishna S.M
Microchip Technology Inc.

Note: The MSSP module in PIC18 can be
configured to use either the SPI or I2C
module.

Low Latency Driver to Access External EEPROM Using
PIC18 Family Devices

AN1243

DS01243A-page 2 © 2008 Microchip Technology Inc.

IMPLEMENTATION

SPI Software Stack
In this implementation, the MSSP module is configured
as SPI and is interfaced with Microchip’s 25XXX series
SPI serial EEPROM device.

Figure 1 displays the layer-wise SPI software stack
implementation.

Figure 2 displays the hardware schematic for the inter-
face between the PIC18 MCU and Microchip’s 25XXX
series devices. The schematic provides the necessary
connections between the microcontroller and the tested
serial EEPROM; the software is written assuming these
connections. The WP and HOLD pins are tied to VCC,
since these are not used in the software stack.

FIGURE 1: SPI SOFTWARE STACK

FIGURE 2: CIRCUIT FOR PIC18 MCU AND 25XXX SERIES DEVICE

 Application Layer

EEPROM Driver Layer

SPI Driver Layer

 Hardware Layer: SDO, SDI, SCK and SS Lines

CS

SO

WP

VSS

VCC

HOLD

SCK

SI

1

2

3

4

8

7

6

5

VCC

25
XX

X

SCK
SDO

SDI

SS

MSSP (SPI)

PIC18 MCU

© 2008 Microchip Technology Inc. DS01243A-page 3

AN1243
I2C Software Stack
The MSSP module is configured as I2C and is interfaced
with Microchip’s 24XXX series’ I2C serial EEPROM
device.

Figure 3 displays the hardware schematic for the
interface between the PIC18 MCU and Microchip’s
24XXX series devices. The schematic provides the
connections necessary between the microcontroller

and the serial EEPROM; the software is developed
assuming these connections. As the SDA and SCL
pins are open-drain terminals, they require pull-up
resistors to VCC (typically, 10 kΩ for 100 kHz and 2 kΩ
for 400 kHz and 1 MHz). The WP pin is tied to ground
as the write-protect feature is not used in the software
stack provided.

FIGURE 3: CIRCUIT FOR PIC18 MCU AND 24XXX SERIES DEVICE

A0

A1

A2

VSS

VCC

WP

SCL

SDA

1

2

3

4

8

7

6

5

VCC

24
XX

X 4.7K 4.7K

SCL

SDA

MSSP

PIC18 MCU

(I2C™)

AN1243

DS01243A-page 4 © 2008 Microchip Technology Inc.

Figure 4 displays the layer-wise I2C software stack
implementation.

FIGURE 4: I2C™ SOFTWARE STACK

FIRMWARE
• SPI Module – The source code consists of three

files (main.c, ee_drv.c and spi_drv.c),
which fit into the corresponding layers based on
file operation.

• I2C Module – The source code consists of three
files (main.c, ee_drv.c and i2c_drv.c), which
fit into the corresponding layers based on file
operation.

APPLICATION LAYER
The application layer (main.c), in both SPI and I2C
modes, consists of API calls to initialize, write, read and
verify the SPI and I2C EEPROM devices. The main API
calls are EE_Init(), EE_Write(), EE_Read() and
EE_Verify(). The other two APIs associated with the
main APIs are EE_Status() and EE_Task(). API
EE_Status() returns the current status of the
EEPROM operation. API EE_Task() updates the
EEPROM with respect to the operation of the main API
and the current status of EEPROM.

EEPROM DRIVER LAYER
The application APIs are defined in the EEPROM driver
layer (ee_drv.c). API, EE_Init(), initializes the
EEPROM, EE_Write() writes the requested number
of bytes to the given EEPROM address, EE_Read()
reads the requested number of bytes from the given
EEPROM address and EE_Verify() verifies the
number of bytes against the contents of EEPROM at
the given address. API, EE_Status(), returns the
current status of the EEPROM operation and must be
called before each read/write to ensure that the driver
is free. It must be called after every read to ensure that
the data has been successfully copied to the user’s
space.

API, EE_Task(), is implemented as the main (high-
level) EEPROM driver. The driver runs through
different states to get the SPI/I2C EEPROM read/write
done using the low-level SPI/I2C driver.

• SPI Driver

The SPI driver chops the EEPROM writes into
page sizes. The driver waits until the EEPROM
chip is ready between consecutive page writes by
reading the Write-In-Process (WIP) bit of the
status register in the EEPROM. The WIP bit
indicates whether the EEPROM is busy with an
internal write operation. The driver resets the
EEPROM in case of errors.

• I2C Driver

The I2C driver chops the EEPROM writes into page
sizes. The driver waits until the EEPROM chip is
ready between consecutive page writes by polling
the EEPROM device. The Acknowledgement
(ACK) polling between page writes is required to
determine whether the external EEPROM device is
busy with its internal write operation. The driver also
resets the EEPROM device in case of errors.

 Application Layer

EEPROM Driver Layer

I2C™ Driver Layer

 Hardware Layer: SCL and SDA Lines

© 2008 Microchip Technology Inc. DS01243A-page 5

AN1243

LOW-LEVEL DRIVER LAYER
• SPI Driver Layer (spi_drv.c) – It initializes the

SPI module (SPI_Init()), disables the module
and re-enables it in case of errors
(Reset_EE_Chip()), and implements the low-
level SPI driver. The low-level SPI driver is a
semi-generic state machine implemented as an
ISR, which goes through the necessary states to
construct an SPI frame. In case the interrupts are
shared among different modules, this routine
must be called when the root ISR spots that
SSPIF is set.

• I2C Driver Layer (i2c_drv.c) – It initializes the
I2C module (I2C_Init()), disables the module
and re-enables it in case of errors
(Reset_EE_Chip()), and implements the low-
level I2C driver. Like the SPI driver, the low-level
I2C driver is a semi-generic state machine
implemented as an ISR, which goes through the
necessary states to construct an I2C frame. If the
interrupts are shared among different modules,
this routine must be called when the root ISR
spots that SSPIF is set.

HARDWARE LAYER
• SPI Module – Whenever the MSSP module is

enabled and configured for SPI mode in the
device, it configures the SCK, SDO, SDI and SS
pins as serial port pins. These pins are used by
the MSSP hardware module during SPI
communications.

• I2C Module – Whenever the MSSP module is
enabled and configured for I2C Master mode in the
device, it configures the SCL and SDA pins as
serial port pins. In Master mode, the SCL and SDA
lines are used by the MSSP hardware during I2C
communications.

LATENCY DETAILS
• SPI Driver – Table 1 provides the latency details

based on an oscillator frequency of 10 MHz for
1-byte write, read and verify.

TABLE 1: LATENCY DETAILS FOR SPI DRIVER
FOSC = 10 MHz

API Performance Time (μs) Performance Time (μs)
(FOSC with PLL) Comments

EE_Init() 18 4.4 Main API
EE_Task() 11.2 2.8 Associated API
EE_Write() 296 74 Main API
EE_Task() 20 5 Associated API
EE_Read() 168 42 Main API
EE_Task() 12.6 3.2 Associated API

EE_Verify() 180 46 Main API
EE_Task() 12.8 3.2 Associated API

AN1243

DS01243A-page 6 © 2008 Microchip Technology Inc.

• I2C Driver – Table 2 provides the latency details
based on an oscillator frequency of 10 MHz for
1-byte write, read and verify.

TABLE 2: LATENCY DETAILS FOR I2C™ DRIVER
FOSC = 10 MHz

API Performance Time (μs) Performance Time (μs)
(FOSC with PLL) Comments

EE_Init() 15.6 3.9 Main API
EE_Task() 28.8 7.2 Associated API
EE_Write() 94 23.2 Main API
EE_Task() 11.6 2.9 Associated API
EE_Read() 94 23.6 Main API
EE_Task() 10.8 2.7 Associated API

EE_Verify() 110 27.2 Main API
EE_Task() 10.8 2.7 Associated API

© 2008 Microchip Technology Inc. DS01243A-page 7

AN1243

API DETAILS

EE_Init()

Initializes the MSSP module and the external EEPROM chip.

Syntax
void EE_Init (void)

Parameters
None

Return Values
None

Example
void main(void)
{

// Function to initialize the MSSP and external EEPROM
EE_Init();

 while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

EE_Write()

Writes the requested number of bytes to the given EEPROM address.

Syntax
 void EE_Write(unsigned int address, unsigned char *data, unsigned int numbytes)

Parameter
address – Address on EEPROM chip to write to

data – Location from where data must be copied

numbytes – Number of bytes to be written

Return Values
None

Example
unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char WriteString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};

void main(void)
{

// Function to write data into EEPROM
EE_Write(Address, WriteString, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

AN1243

DS01243A-page 8 © 2008 Microchip Technology Inc.

EE_Read()

Reads the requested number of bytes from the given EEPROM address.

Syntax
void EE_Read(unsigned char *data, unsigned int address, unsigned int numbytes)

Parameter
data – Location where the read data will be copied
address – Address on EEPROM chip to read from
numbytes – Number of bytes to read

Return Values
None

Example
unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char ReadString[6] = {0,0,0,0,0,0};

void main(void)
{

// Function to read data from EEPROM
EE_Read(ReadString, Address, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

EE_Verify()
Verifies contents of a buffer against the contents of the EEPROM.

Syntax
 void EE_Verify(unsigned char *data, unsigned int address, unsigned int numbytes)

Parameter
data – Location of data bytes to verify against EEPROM contents
address – Address on EEPROM chip to verify from
numbytes – Number of bytes to verify

Return Values
None

Example
unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char VerifyString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};

void main(void)
{

EE_Verify(VerifyString, Address, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

© 2008 Microchip Technology Inc. DS01243A-page 9

AN1243
EE_Status()

Returns the current status of the EEPROM operation.

Syntax
EE_Result_Type EE_Status (void)

Parameter
None

Return Values
Returns current state of EEPROM module.

Example:

unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char WriteString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};
typedef enum {EE_BUSY,EE_ERROR,EE_VERIFY_FAIL,EE_FREE}EE_Result_Type;

void main(void)
{

EE_Write(Address, WriteString, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

EE_Task()

This API runs through different states to get the SPI/I2C EEPROM reads/writes done using the low-level SPI/I2C
driver, respectively.

Syntax
 void EE_Task (void)

Parameter
None

Return Values
None

Example
unsigned int Address = 0x0000;
unsigned int Length = 6
unsigned char WriteString[6] = {0x1,0x2,0x3,0x4,0x5,0x6};

void main(void)
{

EE_Write(Address, WriteString, Length);
while (EE_Status() == EE_BUSY)
{

EE_Task();
// Perform any other task here

}
}

AN1243

DS01243A-page 10 © 2008 Microchip Technology Inc.

SPI Software Stack Control Flow
See Figure 5 for EEPROM driver control flow and
Figure 6 for SPI driver control flow.

FIGURE 5: EEPROM DRIVER CONTROL FLOW

EE_READ

No

Yes

EE_WRITE

EE_Init()

EE_POLL

Number of bytes
left to write > 0

EE_CLEAN_UP

EE_CLEAN_UP

E
E
_
R
e
a
d
(
)

an
d

E
E
_
V
e
r
i
f
y
(
)

EE_CHIP_INIT

E
E
_
W
r
i
t
e
(
)

Through Multiple
Calls to EE_Task()

© 2008 Microchip Technology Inc. DS01243A-page 11

AN1243
FIGURE 6: SPI DRIVER CONTROL FLOW

No

Yes

EE_Write() API Flow

SPI_READ_SP

SPI_START_COMM

When ‘WEL_STATE’ is in
‘DISABLE_WRITE’ Mode

When ‘WEL_STATE’ is in
‘ENABL_RITE’ Mode

WEL Enabled?

SPI_WRITE_HEADER

SPI_WRITE_CYCLE

SPI_IDLE_STATE

EE_Read() API Flow

SPI_START_COMM

SPI_WRITE_HEADER

SPI_READ_CYCLE

SPI_IDLE_STATE

EE_Verify() API Flow

SPI_START_COMM

SPI_WRITE_HEADER

SPI_READ_CYCLE

SPI_IDLE_STATE

AN1243

DS01243A-page 12 © 2008 Microchip Technology Inc.

I2C Software Stack Control Flow
See Figure 7 for EEPROM driver control flow and
Figure 8 for SPI driver control flow.

FIGURE 7: EEPROM DRIVER CONTROL FLOW

EE_READ

No

Yes

EE_WRITE

EE_Init()

EE_POLL

Number of bytes
left to write > 0

EE_CLEAN_UP

EE_CLEAN_UP

E
E
_
R
e
a
d
(
)

E
E
_
V
e
r
i
f
y
(
)

an
d

EE_CHIP_INIT

Through Multiple
Calls to EE_Task()

E
E
_
W
r
i
t
e
(
)

© 2008 Microchip Technology Inc. DS01243A-page 13

AN1243
FIGURE 8: I2C™ DRIVER CONTROL FLOW

EE_Write() API Flow

EE_Read() API Flow

EE_Verify() API Flow

I2C_START_COMM

I2C_WRITE_HEADER

I2C_READ_CYCLE

I2C_IDLE_STATE

I2C_STOP_CONDITION_SENT

I2C_STOP_CONDITION_SENT

I2C_READ_CYCLE

I2C_RESTART_SENT

I2C_WRITE_HEADER

I2C_START_SENT

I2C_WRITE_CYCLE

I2C_WRITE_HEADER

I2C_START_SENT

AN1243

DS01243A-page 14 © 2008 Microchip Technology Inc.

CONCLUSION
This application note outlines an algorithm, which uses
MSSP module interrupts available in the PIC18 family of
devices, to overcome the limitations of the conventional
approach by following the low latency design.

REFERENCES
• AN1000, “Using the MSSP Module to Interface

SPI Serial EEPROMs with PIC18 Devices” –
www.microchip.com

• AN989, “Using the MSSP Module to Interface
I2C™ Serial EEPROMs with PIC18 Devices” –
www.microchip.com

www.microchip.com
www.microchip.com
www.microchip.com
www.microchip.com

© 2008 Microchip Technology Inc. DS01243A-page 15

AN1243

APPENDIX A: LIBRARY DIRECTORY

TABLE A-1: LIBRARY DIRECTORY ORGANIZATION
Directory Content

Low_Lat_DATAEE_soln:

I2C_solution A Low Latency Data EEPROM Solution for I2C™ EEPROM Chips
SPI_solution A Low Latency Data EEPROM Solution for SPI EEPROM Chips

AN1243

DS01243A-page 16 © 2008 Microchip Technology Inc.

NOTES:

© 2008 Microchip Technology Inc. DS01243A-page 17

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01243A-page 18 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	Overview of Low Latency Design
	Existing Conventional Approach
	Disadvantages of Conventional Approach

	Low Latency Design
	Implementation
	SPI Software Stack
	FIGURE 1: SPI Software Stack
	FIGURE 2: Circuit for PIC18 MCU and 25XXX Series Device

	I2C Software Stack
	FIGURE 3: Circuit for PIC18 MCU and 24XXX Series Device
	FIGURE 4: I2C™ Software Stack

	Firmware
	Application Layer
	EEPROM Driver Layer
	Low-Level Driver Layer
	Hardware Layer
	Latency Details
	TABLE 1: Latency Details for SPI Driver
	TABLE 2: Latency Details for I2C™ Driver

	API Details
	SPI Software Stack Control Flow
	FIGURE 5: EEPROM Driver Control Flow
	FIGURE 6: SPI Driver Control Flow

	I2C Software Stack Control Flow
	FIGURE 7: EEPROM Driver Control Flow
	FIGURE 8: I2C™ Driver Control Flow

	Conclusion
	References
	Appendix A: Library Directory
	TABLE A-1: Library Directory Organization

	Worldwide Sales and Service

