Application Note No. 149

1.8 V, 2.6 mA Low Noise Amplifier for 1575 MHz GPS L1 Frequency with the BFP405 RF Transistor

RF & Protection Devices

Edition 2008-02-22

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Applica	Application Note No. 149					
	on History: 2008-02-22, Rev. 1.2					
Previou	us Version: 2005-09-23, Rev. 1.1					
Page	Subjects (major changes since last revision)					
All	Small changes in figure descriptions					

Application Note 3 Rev. 1.2, 2008-02-22

1 1.8 V, 2.6 mA Low Noise Amplifier for 1575 MHz GPS L1 Frequency with the BFP405 RF Transistor

Overview

- The low emitter-area BFP405 RF Transistor in SOT343 package is shown in a low-cost, low-power consumption LNA targeted for systems having a 1.8 V voltage regulator.
- Standard, low-cost "0402" size passives are used. Total PCB area needed is 50 mm²; total parts count, including the BFP405F transistor, is 12 pieces.
- Printed Circuit Board used is Infineon Part Number 640-061603 Rev A. Standard FR4 material is used in a three-layer PCB. See cross-sectional diagram below.
- The amplifier is unconditionally stable from 5 MHz to 8 GHz.

Summary of Results

T = 25 °C, Network Analyzer Source Power \approx -25 dBm, $V_{\rm CC}$ = 1.8 V, $V_{\rm CE}$ = 1.5 V, $I_{\rm C}$ = 2.6 mA, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω .

Table 1 Summary of Results

Frequency MHz	dB [s11] ²	dB [s21] ²	dB [s12] ²	dB [s22] ²	<i>NF</i> * dB	IIP ₃ dBm	OIP ₃ dBm	IP _{1dB} dBm	<i>OP</i> _{1dB} dBm
1575	9.6	15.3	26.6	9.6	1.6	-5	+10.3	-23.0	-8.7

^{*} PCB loss is not extracted, e-g- reference plane of measurement is at PCB input RF SMA connector. If PCB loss were extracted, noise figure would improve by 0.1 - 0.2 dB, e.g. NF result would be lower / better.

PCB Cross - Section Diagram

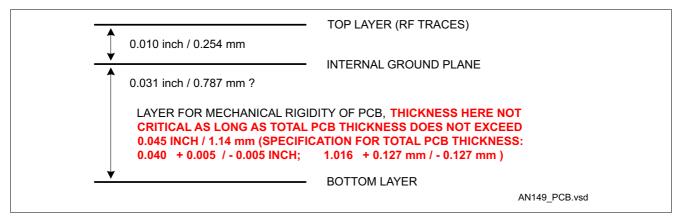


Figure 1 PCB - Cross Sectional Diagram

Application Note 4 Rev. 1.2, 2008-02-22

Schematic Diagram

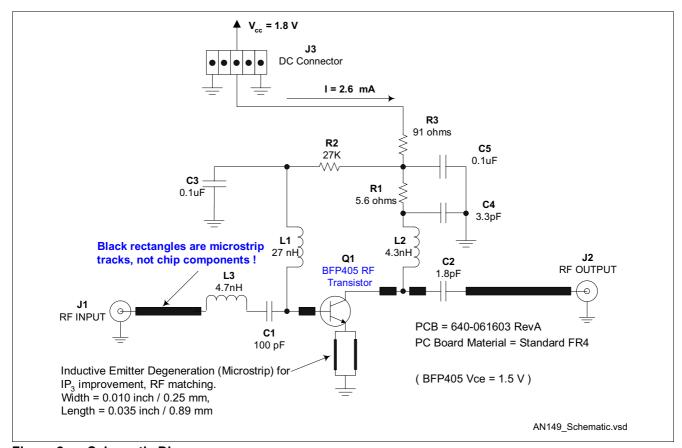


Figure 2 Schematic Diagram

Application Note 5 Rev. 1.2, 2008-02-22

Bill of Material

Table 2 Bill of Material

Designator	Value	Manufacturer	Case Size	Function	
C1	100 pF	Various	0402	DC blocking, input. Using above SRF also provides some net inductance.	
C2	1.8 pF	Various	0402	DC block, output. Also influences output and input match.	
C3	0.1 μF	Various	0402	Decoupling, low frequency. Also improves Third Order Intercept.	
C4	3.3 pF	Various	0402	Decoupling, high frequency. Also influences stability and output match.	
C5	0.1 μF	Various	0402	Low frequency decoupling.	
L1	27 nH	Murata LQP15M series	0402	RF choke at input, bring in DC bias to base.	
L2	4.3 nH	Murata LQP15M series	0402	RF choke at output, influences matching.	
L3	4.7 nH	Murata LQP15M series	0402	Input impedance matching.	
R1	5.6 Ω	Various	0402	RF stability aid.	
R2	27 kΩ	Various	0402	Sets DC operating point (DC bias).	
R3	91 Ω	Various	0402	Sets DC operating point and provides some negative DC feedback to stabilize DC operating point over lot-to-lot variations in device DC current gain, also helps to stabilize DC operating point over temperature.	
Q1	-	Infineon Technologies	SOT343	BFP405 RF Transistor, B6HF process	
J1, J2	-	Johnson 142-0701-841	-	RF input / output connectors	
J3	-	AMP 5 pin header MTA- 100 series 640456-5 (standard pin plating) or 641215-5 (gold plated pins)	-	DC connector Pins 1, 5 = ground Pin 3 = V_{CC} Pins 2, 4 = no connection	

Noise Figure, Plot. Center of Plot (x-axis) is 1575 MHz.

Rohde & Schwarz FSEK3

23 Sep 2005

Noise Figure

EUT Name: BFP405 Low Voltage, Low Current LNA

Manufacturer: Infineon Technologies

Operating Conditions: V=1.8 V, Vce = 1.5V, I=2.6mA, T=25 C

Operator Name: Gerard Wevers
Test Specification: LWR SD 00092 LNA P
Comment: on PCB 540F-061603 Rev A

23 Sept 2005

<u>Analyzer</u>

 RF Att:
 0.00 dB
 RBW:
 1 MHz
 Range:
 40.00 dB

 Ref LvI:
 -41.00 dBm
 VBW:
 100 Hz
 Ref LvI auto:
 ON

Measurement

2nd stage corr: ON Mode: Direct ENR: HP346A.ENR

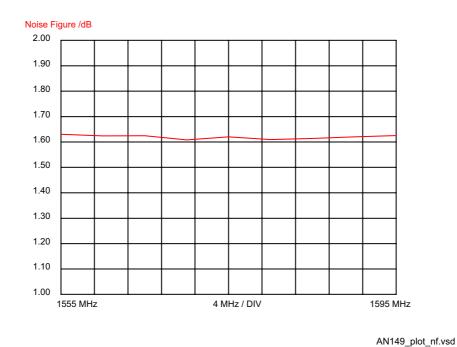


Figure 3 Noise Figure

Application Note 7 Rev. 1.2, 2008-02-22

Noise Figure, Tabular Data

From Rohde & Schwarz FSEK3 + FSEM30 + System Preamplifier System Preamplifier = MITEQ SMC-02

Table 3 Noise Figure

Frequency	Noise Figure
1555 MHz	1.63 dB
1560 MHz	1.62 dB
1565 MHz	1.62 dB
1570 MHz	1.61 dB
1575 MHz	1.62 dB
1580 MHz	1.61 dB
1585 MHz	1.61 dB
1590 MHz	1.62 dB
1595 MHz	1.63 dB

Application Note 8 Rev. 1.2, 2008-02-22

Scanned Image of PC Board

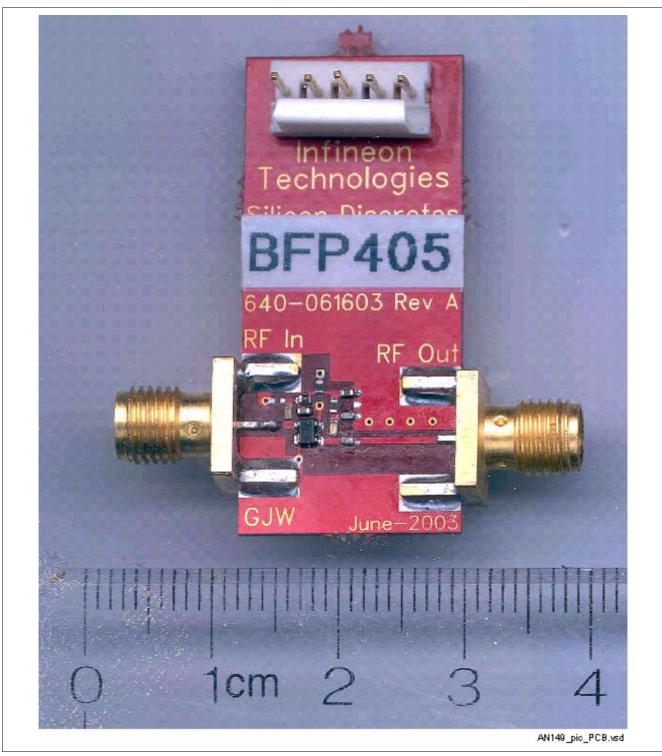


Figure 4 Image of PC Board

Application Note 9 Rev. 1.2, 2008-02-22

Scanned Image of PC Board, Close-In Shot.

Total PCB area is approximately 50 mm².

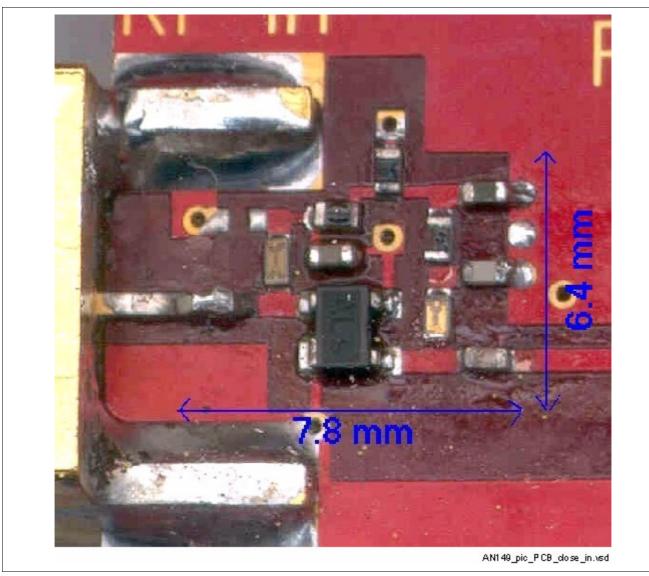


Figure 5 Image of PC Board, Close-In Shot

Application Note 10 Rev. 1.2, 2008-02-22

Amplifier Stability

$$T$$
 = 25 °C, $V_{\rm CC}$ = 1.8 V, $V_{\rm CE}$ = 1.5 V, I = 2.6 mA.

Stability Factor "K" is shown below from "screen shot" taken from Rohde and Schwarz ZVC network analyzer. ZVC Vector Network Analyzer calculates and plots K in real time, from measured S parameters. Note that K>1 from 5 MHz to 8 GHz; amplifier is unconditionally stable over this range.

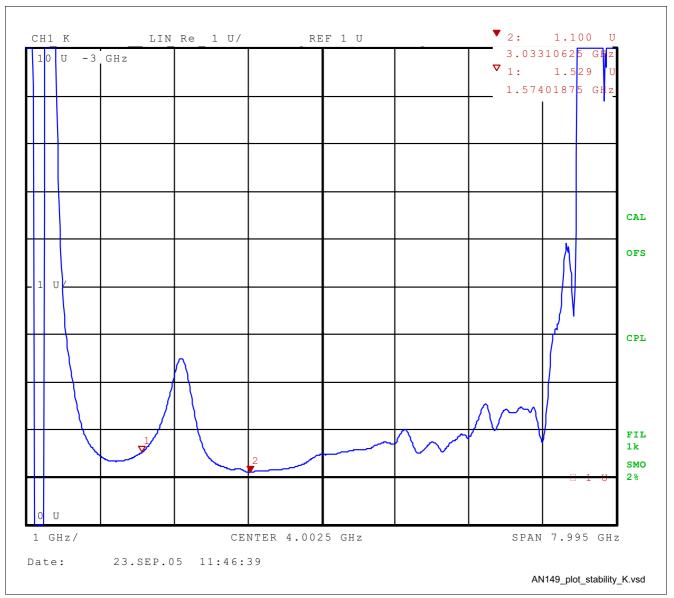


Figure 6 Plot of K(f)

Application Note 11 Rev. 1.2, 2008-02-22

Gain Compression at 1575 MHz, T = 25 °C

Amplifier is checked for 1 dB compression point. An Agilent power meter was used to ensure accurate power levels are measured (as opposed to using Vector Network Analyzer in "Power Sweep" mode).

Output $P_{\text{1dB}} \cong$ -8.7 dBm; Input $P_{\text{1dB}} \cong$ -8.7 dBm -(Gain - 1 dB) = -8.7 dBm - 14.3 dB = -23.0 dBm

Table 4 Gain Compression at 1575 MHz

P_{OUT} , dBm	Gain, dB
-15.0 -14.0	15.3
	15.3
-13.0	15.2
-12.0 -11.0	15.1
	15.0
-10.0	14.8
-9.0	14.4
-9.0 -8.0	14.0
-7.0	13.2

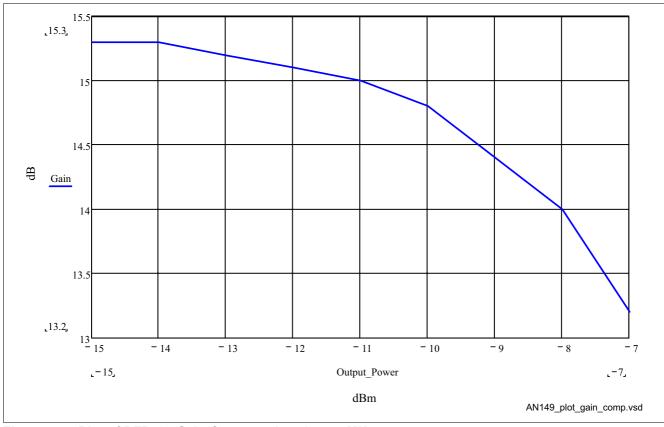


Figure 7 Plot of BFP405 Gain Compression, 1575.4 MHz

Application Note 12 Rev. 1.2, 2008-02-22

Please Note - all plots are taken from Rohde and Schwarz ZVC Network Analyzer T = 25 °C, source power \approx -30 dBm.

Input Return Loss, Log Mag

5 MHz - 8 GHz Sweep

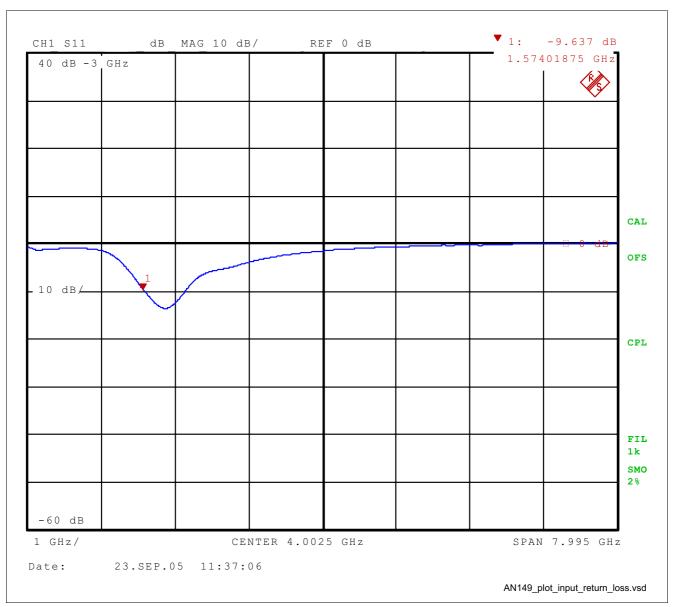


Figure 8 Plot of Input Return Loss

Application Note 13 Rev. 1.2, 2008-02-22

Input Return Loss, Smith Chart

Reference Plane = Input SMA Connector on PC Board 5 MHz - 8 GHz Sweep

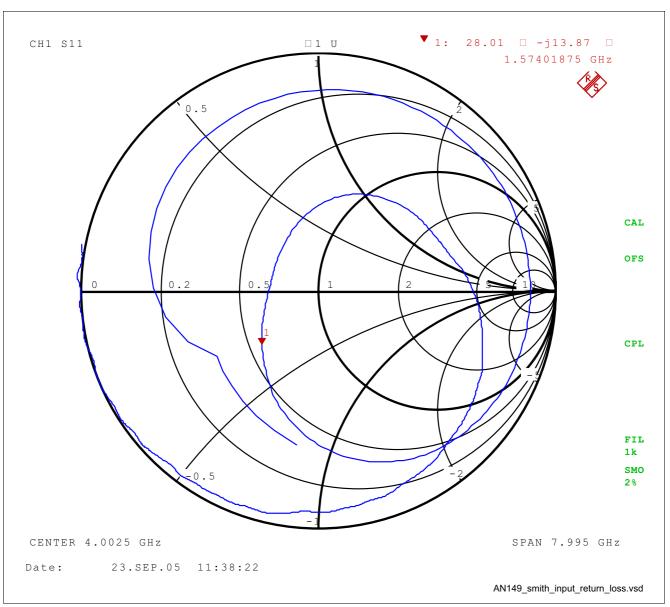


Figure 9 Smith Chart of Input Return Loss

Application Note 14 Rev. 1.2, 2008-02-22

Forward Gain

5 MHz - 8 GHz Sweep

Figure 10 Plot of Forward Gain

Application Note 15 Rev. 1.2, 2008-02-22

Reverse Isolation

5 MHz - 8 GHz

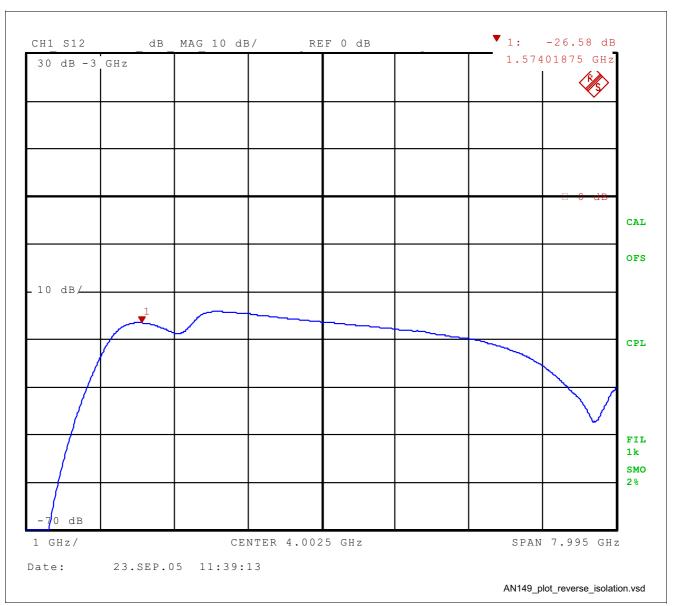


Figure 11 Plot of Reverse Isolation

Application Note 16 Rev. 1.2, 2008-02-22

Output Return Loss, Log Mag

5 MHz - 8 GHz

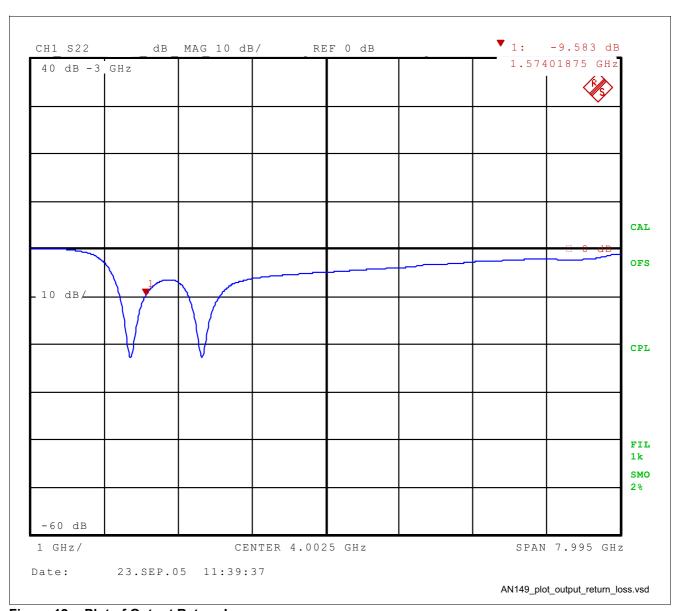


Figure 12 Plot of Output Return Loss

Application Note 17 Rev. 1.2, 2008-02-22

Output Return Loss, Smith Chart

Reference Plane = Output SMA Connector on PC Board 5 MHz - 8 GHz Sweep

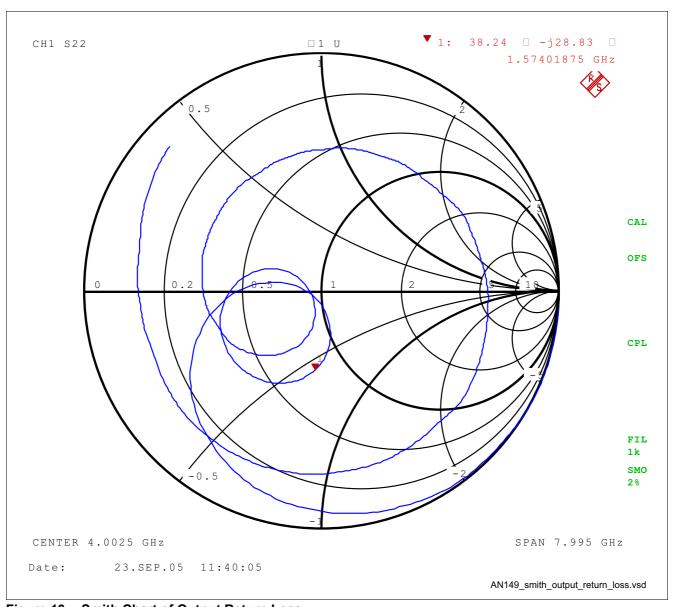


Figure 13 Smith Chart of Output Return Loss

Application Note 18 Rev. 1.2, 2008-02-22

Amplifier Response to Two Tone Test

Input stimulus: f_1 = 1575 MHz, f_2 = 1576 MHz, -30 dBm each tone.

Input IP_3 = -30 + (50.0 / 2) = -5.0 dBm

Output IP_3 = -5.0 dBm + 15.3 dB gain = +10.3 dBm

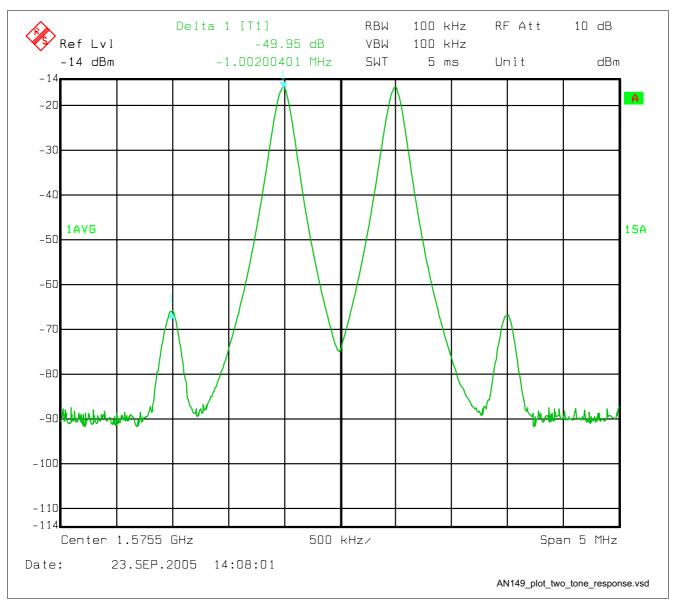


Figure 14 Tow-Tone Test, LNA Response

Application Note 19 Rev. 1.2, 2008-02-22