Application Note No. 111

Low-cost, High-performance solution of BFP540ESD+SAW Filter for TPMS & RKE's Rx Front End

RF & Protection Devices

Edition 2007-08-30

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Applica	ation Note No. 111	
Revisio	on History: 2007-08-30, Rev. 1.2	
Previou	us Version: 2006-12-14, Rev. 1.1	-
Page	Subjects (major changes since last revision)	
All	Small changes in figure descriptions	

Trademarks

SIEGET® is a registered trademark of Infineon Technologies AG.

Application Note 3 Rev. 1.2, 2007-08-30

1 Low-cost, High-performance solution of BFP540ESD+SAW Filter for TPMS & RKE's Rx Front End

Overview

- The BFP540ESD of Infineon Technologies is an ESD-hardened SIEGET silicon transistor. The combination of high gain, low noise figure, excellent ESD performance makes the BFP540ESD ideal as a wide band feedback LNA to boost the sensitivity of Remote Keyless Entry (RKE) and Tire Pressure Monitoring Systems (TPMS).
- Infineon BFP540ESD can stand 1000 V Electro-Static Discharge Pulses (Human Body Model) between any pair of terminals.
- BCR400W is designed for stabilizing bias current from less than 0.2 mA to 200 mA even at low battery, which is applied to the evaluation board to improve DC reliability as RF performance is sensitive to current.
- Alternatives of the SAW filters B3710 B3711 made by EPCOS will be used after BFP540ESD LNA stage in the
 test board according to operation frequency. Measurement results of every stage and the whole board will be
 tested and shown.

Board overview

The Demo board as shown in Figure 2 is built on low cost 1mm thickness FR4 PC-Board material of three layers, the cross-section of which is shown in Figure 1. Schematic and bill of materials are shown in Figure 3 and Table 1 respectively.

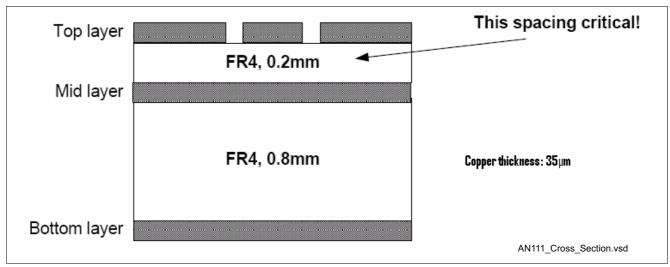


Figure 1 PCB Cross Section

Application Note 4 Rev. 1.2, 2007-08-30

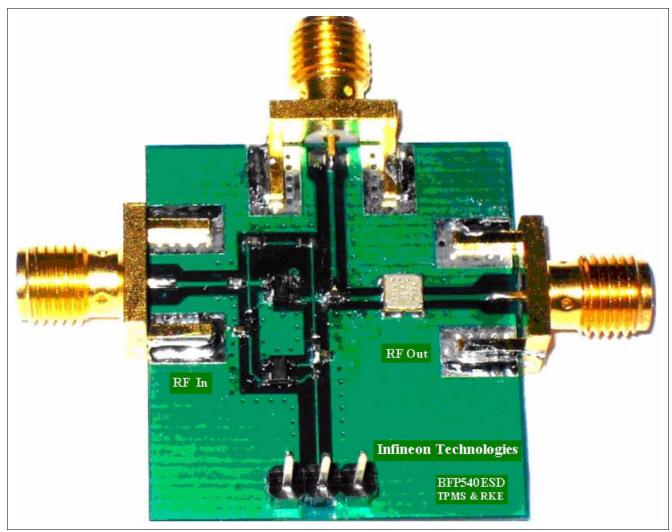


Figure 2 Photo of evaluation board

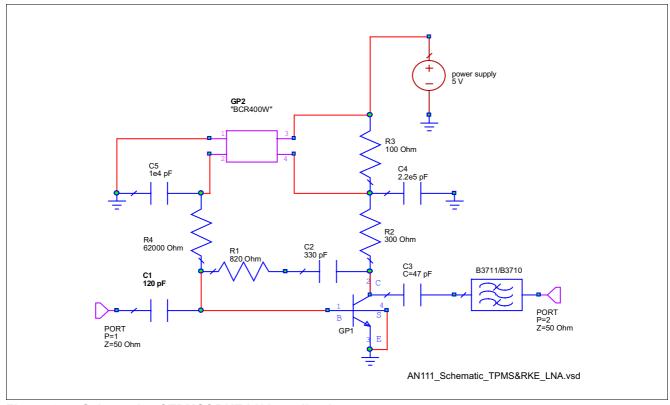


Figure 3 Schematic of TPMS&RKE LNA application

Application Note 6 Rev. 1.2, 2007-08-30

Table 1 Bill Of Material

Part Number	Value	Package	Manufacturer	Comment
C1	120 pF	0402	Various	DC Block, Input
C2	330 pF	0402	Various	DC Block for feedback network
C3	47 pF	0402	Various	DC Block
C4*	0.22 μF	0402	Various	Decoupling, Low Frequency
C5*	10000 pF	0402	Various	Decoupling
R1	750 Ω	0402	Various	Feedback Resistor for LNA
R2	300 Ω	0402	Various	Bias for Collector, Block AC Signal
R3	100 Ω	0402	Various	Bias for Collector, BCR400W Control Current by R3
R4	62 kΩ	0402	Various	Bias for Base
GP1	-	SOT343	Infineon Technologies	BFP540ESD ESD-Hardened to 1 kV HBM
GP2	-	SOT343	Infineon Technologies	BCR400W for stabilizing current
GP3	B3711/B3710	DCC6C	EPCOS	Band Pass SAW Filter

^{*} In order to avoid loop oscillation (hunting), time constants must be chosen adequately, i.e. $C_1 >= 10 \times C_2$

Table 2 Summary of BFP540ESD LNA Data

Parameter	Results	Comments	
Frequency Range	0.3 MHz ~ 600 MHz		
DC Current	5 mA		
VCE of BFP540ESD	3 V		
Gain	17.9 dB @ 315 MHz 17.5 dB @ 434 MHz		
NF	1.47 dB @ 315 MHz 1.4 dB @ 434 MHz		
Input Return Loss	11.4 dB @ 315 MHz 11.1 dB @ 434 MHz		
Output Return Loss	12.6 dB @ 315 MHz 12.2 dB @ 434 MHz		
Reverse Isolation	-24 dB @ 315 MHz -24 dB @ 434 MHz		

Application Note 7 Rev. 1.2, 2007-08-30

Table 3 Summary of SAW Filter data

B3711		·
Parameter	Results	Comments
Centre Frequency	315 MHz	
Insertion Loss	1.34 dB @ 315 MHz	
Input Return Loss	23.6 dB @ 315 MHz	
Output Return Loss	23.35 dB @ 315 MHz	
Attenuation	28.6 dB @ 310 MHz 29.7 dB @ 320 MHz 55.8 dB @ 440 MHz 70.8 dB @ 260 MHz	
B3710		
Parameter	Results	Comments
Centre Frequency	433.92 MHz	
Insertion Loss	2.0 dB @ 434 MHz	
Input Return Loss	24.8 dB @ 315 MHz	
Output Return Loss	20.5 dB @ 315 MHz	
Attenuation	22.6 dB @ 428 MHz 20.7 dB @ 440 MHz 68.5 dB @ 380 MHz 68.5 dB @ 470 MHz	

Application Note 8 Rev. 1.2, 2007-08-30

Table 4 Summary of the front end data (BFP540ESD LNA + Bandpass filter)

BFP540 + B3711			
Parameter	Results	Comments	
Frequency Range	314.7 MHz ~ 315.3 MHz		
DC Current	5 mA		
$\overline{V_{\text{CE}}}$ of BFP540ESD	3 V		
Gain	16.5 dB @ 315 MHz		
NF	1.48 dB @ 315 MHz		
Input Return Loss	11.4 dB @ 315 MHz		
Output Return Loss	13.9 dB @ 315 MHz		
Reserve Isolation	25.1 dB @ 315 MHz		
Input 1dB compression	-21.17 dB @ 315 MHz		
Input IIP ₃	-11.28 dBm	Two tones	
		Tone1, -33 dB @ 314.5 MHz	
		Tone2, -22 dB @ 315.5 MHz	
BFP540 + B3710			
Parameter	Results	Comments	
Frequency Range	433 MHz ~ 434.71 MHz		
DC Current	5 mA		
$V_{\sf CE}$ of BFP540ESD	3 V		
Gain	15.93 dB @ 434 MHz		
NF	1.42 dB @ 434 MHz		
Input Return Loss	11.37 dB @ 434 MHz		
Output Return Loss	13.52 dB @ 434 MHz		
Reserve Isolation	-25.7 dB @ 434 MHz		
Input 1dB compression	-15.06 dB @ 434 MHz		
Input IIP ₃	-10.96 dBm	Two tones	
		Tone1, -33 dB @ 433.5 MHz	
		Tone2, -22 dB @ 434.5 MHz	

Application Note 9 Rev. 1.2, 2007-08-30

K and B1 of BFP540ESD LNA

Figure 4 K(f) and B1(f)

Application Note 10 Rev. 1.2, 2007-08-30

Table 5 Noise Figure of BFP540ESD LNA Alone! (429 MHz ~ 439 MHz)

Frequency	Noise Figure	Gain	
429.00000 MHz	1.4535 dB	16.8217 dB	
430.00000 MHz	1.4239 dB	16.8102 dB	
431.00000 MHz	1.3928 dB	16.8081 dB	
432.00000 MHz	1.4028 dB	16.7978 dB	
433.00000 MHz	1.3976 dB	16.7917 dB	
434.00000 MHz	1.3975 dB	16.7948 dB	
435.00000 MHz	1.4072 dB	16.7872 dB	
436.00000 MHz	1.3978 dB	16.8054 dB	-
437.00000 MHz	1.3953 dB	16.8091 dB	-
438.00000 MHz	1.3975 dB	16.8161 dB	
439.00000 MHz	1.4203 dB	16.8087 dB	-

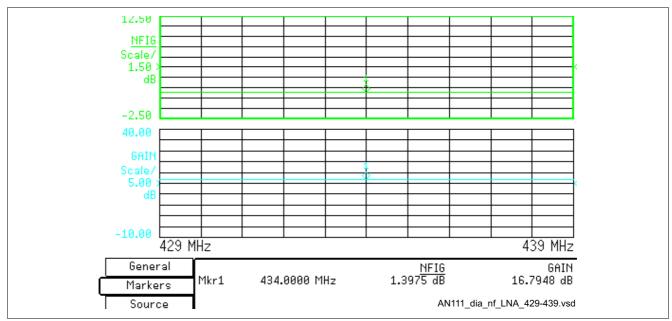


Figure 5 Noise Figure of BFP540ESD LNA Alone! (429 MHz ~ 439 MHz)

Application Note 11 Rev. 1.2, 2007-08-30

Table 6 Noise Figure of BFP540ESD LNA Alone! (310 MHz ~ 320 MHz)

Frequency	Noise Figure	Gain	
310.00000 MHz	1.4276 dB	17.5669 dB	
311.00000 MHz	1.4417 dB	17.5742 dB	
312.00000 MHz	1.4781 dB	17.5883 dB	
313.00000 MHz	1.4844 dB	17.6047 dB	
314.00000 MHz	1.4832 dB	17.6190 dB	
315.00000 MHz	1.4701 dB	17.6160 dB	
316.00000 MHz	1.4714 dB	17.6143 dB	
317.00000 MHz	1.4423 dB	17.6207 dB	
318.00000 MHz	1.4510 dB	17.6100 dB	
319.00000 MHz	1.4497 dB	17.6053 dB	
320.00000 MHz	1.4667 dB	17.6062 dB	

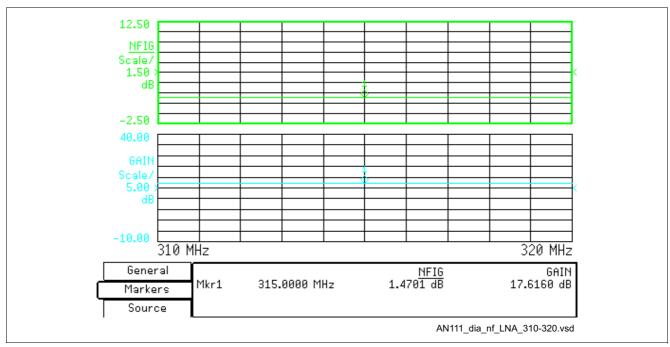


Figure 6 Noise Figure of BFP540ESD LNA Alone! (310 MHZ ~ 320 MHz)

Application Note 12 Rev. 1.2, 2007-08-30

Table 7 Noise Figure of Front End (BFP540ESD LNA Plus SAW Filter B3710)

Frequency	Noise Figure	Gain	
429.00000 MHz	1.9124 dB	09.3424 dB	
430.00000 MHz	1.4987 dB	12.5603 dB	
431.00000 MHz	1.4629 dB	14.3943 dB	
432.00000 MHz	1.4232 dB	15.3753 dB	
433.00000 MHz	1.4064 dB	15.8708 dB	
434.00000 MHz	1.4205 dB	15.9757 dB	
435.00000 MHz	1.4197 dB	15.8990 dB	
436.00000 MHz	1.4267 dB	15.5684 dB	
437.00000 MHz	1.4484 dB	14.7000 dB	
438.00000 MHz	1.5412 dB	12.8730 dB	
439.00000 MHz	1.6300 dB	09.9760 dB	

Figure 7 Noise Figure of Front End (BFP540ESD LNA Plus SAW Filter B3710)

Application Note 13 Rev. 1.2, 2007-08-30

Table 8 Noise Figure of Front End (BFP540ESD LNA Plus SAW Filter B3711)

Frequency	Noise Figure	Gain	
310.00000 MHz	2.2143 dB	00.3415 dB	
311.00000 MHz	1.6532 dB	06.7412 dB	
312.00000 MHz	1.5981 dB	11.4291 dB	
313.00000 MHz	1.5628 dB	14.2293 dB	
314.00000 MHz	1.5060 dB	15.6274 dB	
315.00000 MHz	1.4844 dB	16.0749 dB	
316.00000 MHz	1.4775 dB	15.8385 dB	
317.00000 MHz	1.5128 dB	14.7086 dB	
318.00000 MHz	1.5952 dB	12.3993 dB	
319.00000 MHz	1.7307 dB	08.9415 dB	
320.00000 MHz	1.9356 dB	04.6864 dB	

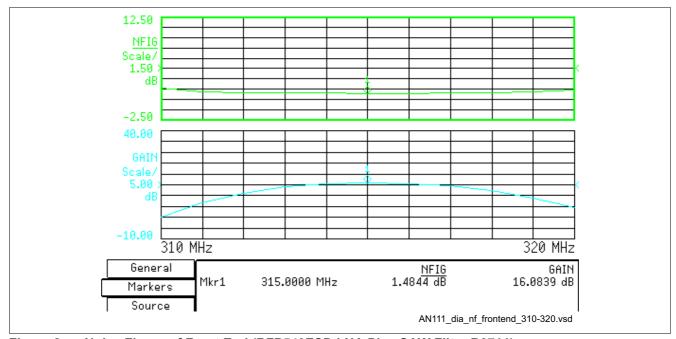


Figure 8 Noise Figure of Front End (BFP540ESD LNA Plus SAW Filter B3711)

Application Note 14 Rev. 1.2, 2007-08-30

Return Loss of BFP540ESD LNA Alone!

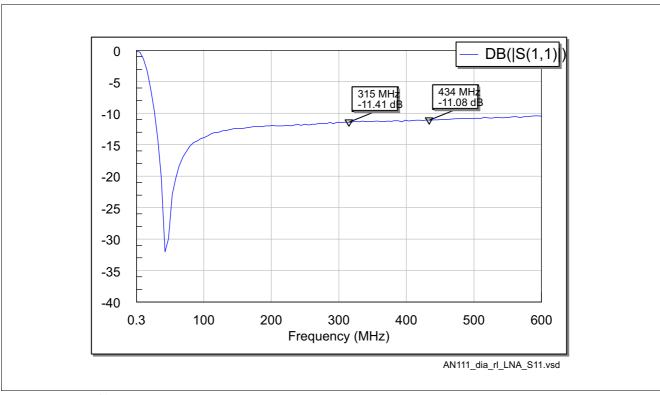


Figure 9 $S_{11}(f)$

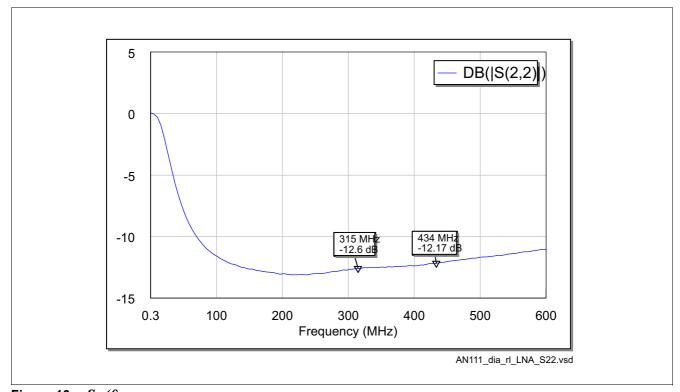


Figure 10 $S_{22}(f)$

Application Note 15 Rev. 1.2, 2007-08-30

Forward Gain and Isolation of BFP540 LNA Alone!

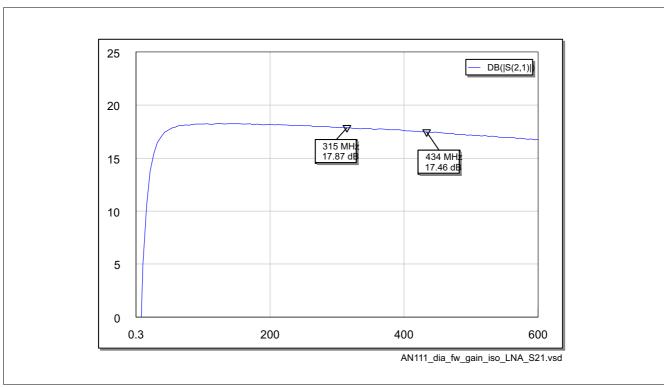


Figure 11 $S_{21}(f)$

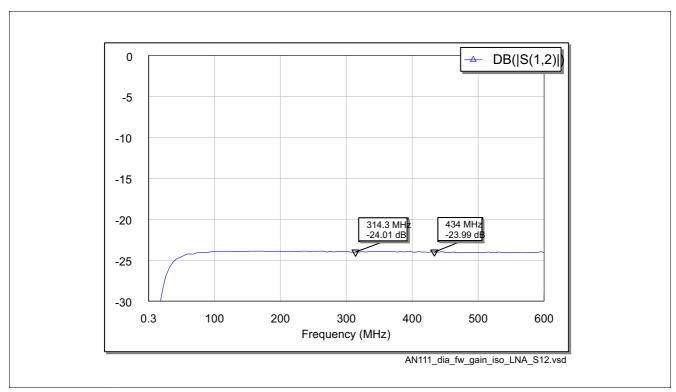


Figure 12 $S_{12}(f)$

Application Note 16 Rev. 1.2, 2007-08-30

Return Loss of Front End (BFP540ESD LNA Plus SAW Filter B3710)

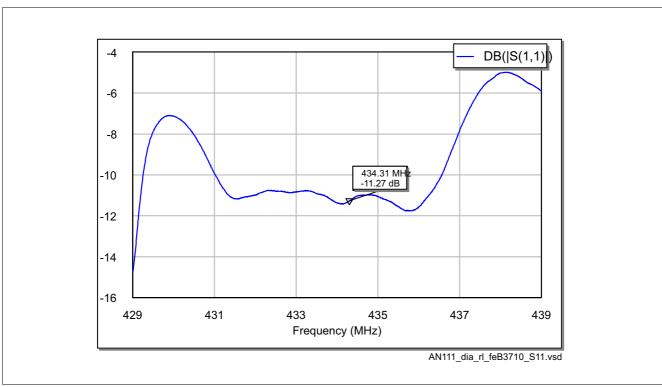


Figure 13 $S_{11}(f)$

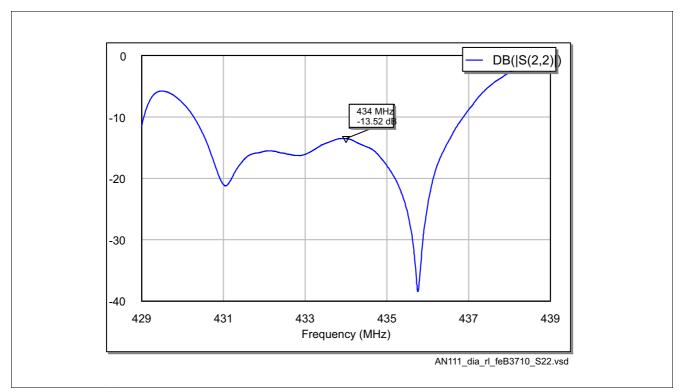


Figure 14 $S_{22}(f)$

Application Note 17 Rev. 1.2, 2007-08-30

Smith Chart of Return Loss (BFP540ESD LNA Plus SAW Filter B3710)

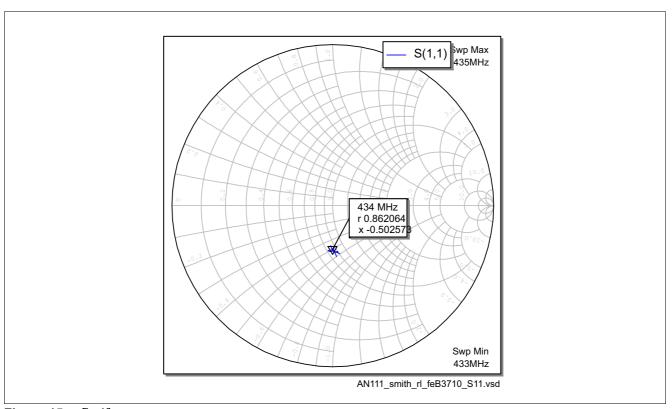


Figure 15 $S_{11}(f)$

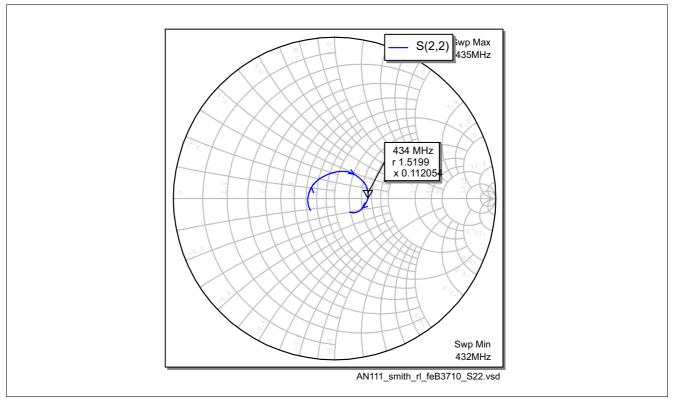


Figure 16 $S_{22}(f)$

Application Note 18 Rev. 1.2, 2007-08-30

Forward Gain and Isolation of Front End (BFP540ESD LNA Plus SAW Filter B3710)

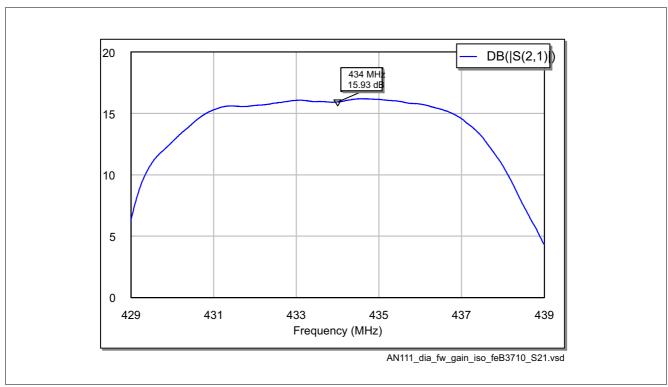


Figure 17 $S_{21}(f)$

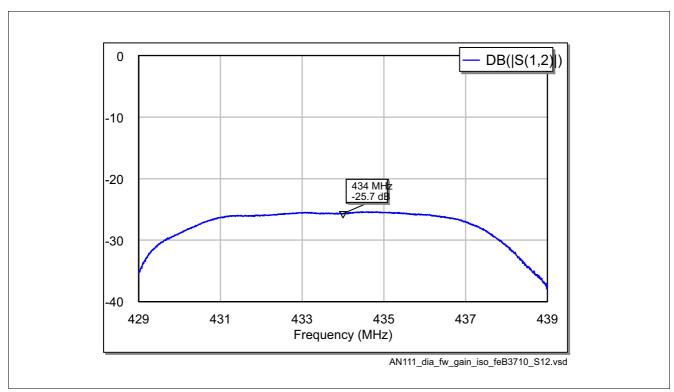


Figure 18 $S_{12}(f)$

Application Note 19 Rev. 1.2, 2007-08-30

Input IIP3 of Front End (BFP540ESD Plus SAW Filter B3710)

Two Tones:

- Tone1, -33 dB @ 433.5 MHz
- Tone2, -33 dB @ 434.5 MHz

Input $IP_3 = -33+(44.08/2) = -10.96$ dBm

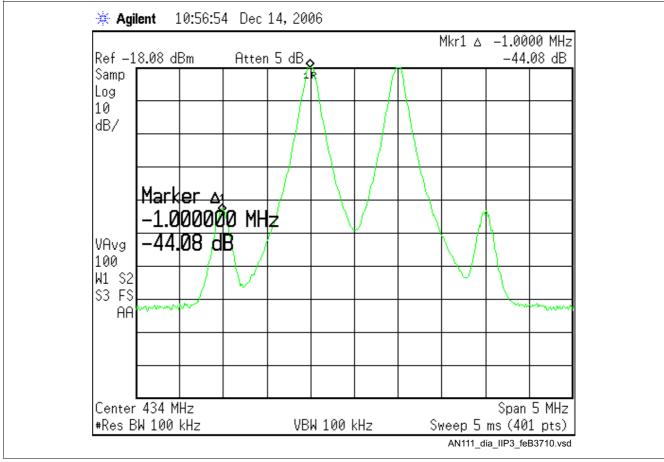


Figure 19 Input IIP_3 of Front End (BFP540ESD Plus SAW Filter B3710)

Application Note 20 Rev. 1.2, 2007-08-30

Input 1dB compression of Front End (BFP540ESD Plus SAW Filter B3710')

Figure 20 Input 1dB compression of Front End (BFP540Esd Plus SAW Filter B3710)

Application Note 21 Rev. 1.2, 2007-08-30

Return Loss of Front End (BFP540ESD LNA Plus SAW Filter B3711)

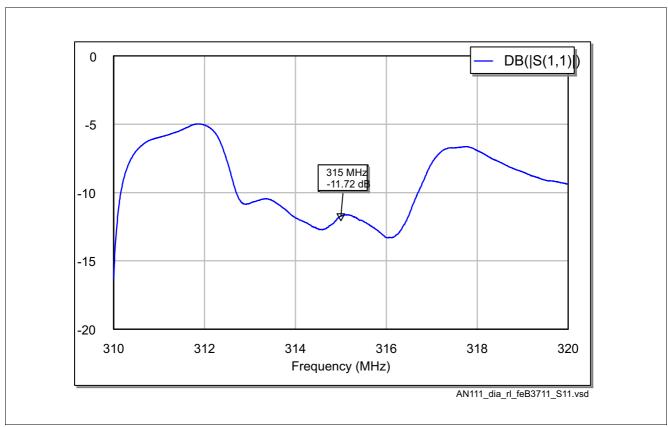


Figure 21 $S_{11}(f)$

Application Note 22 Rev. 1.2, 2007-08-30

Smith Chart of Return Loss of Front End (BFP540ESD LNA Plus SAW Filter B3711)

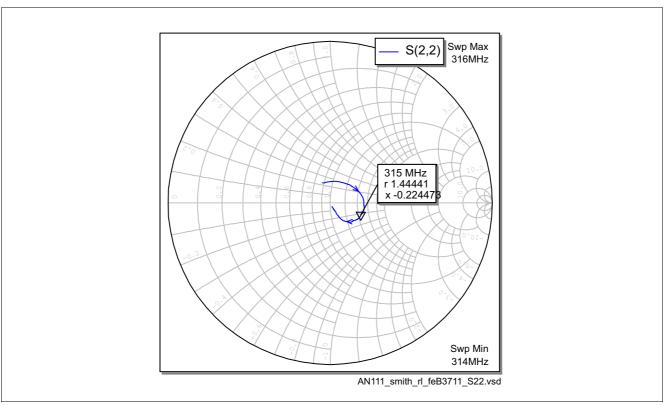


Figure 22 $S_{22}(f)$

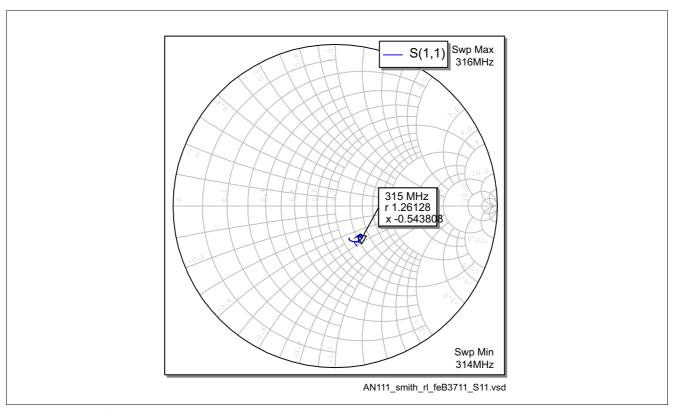


Figure 23 $S_{11}(f)$

Application Note 23 Rev. 1.2, 2007-08-30

Forward Gain and Isolation of Front End (BFP540ESD LNA Plus SAW Filter B3711)

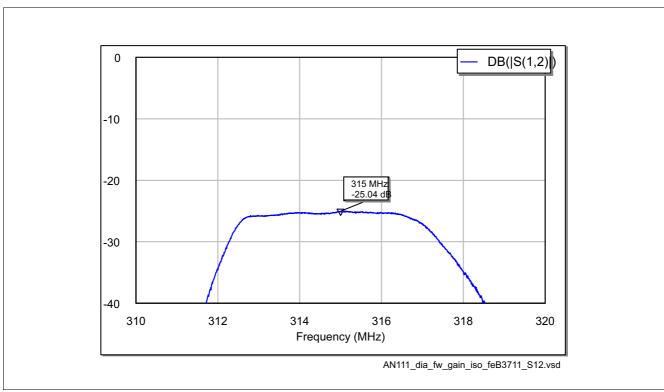


Figure 24 $S_{12}(f)$

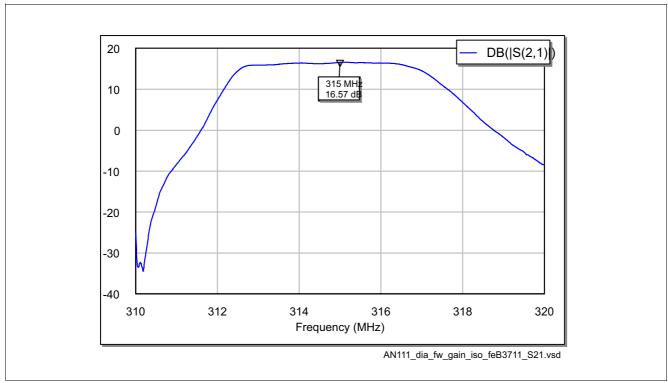


Figure 25 $S_{21}(f)$

Application Note 24 Rev. 1.2, 2007-08-30

Input IIP3 of Front End (BFP540ESD Plus SAW Filter B3711)

Two Tones:

- Tone1, -33 dB @ 314.5 MHz
- Tone2, -33 dB @ 315.5 MHz

Input IP_3 = -33+(43.43/2) = -11.28 dBm

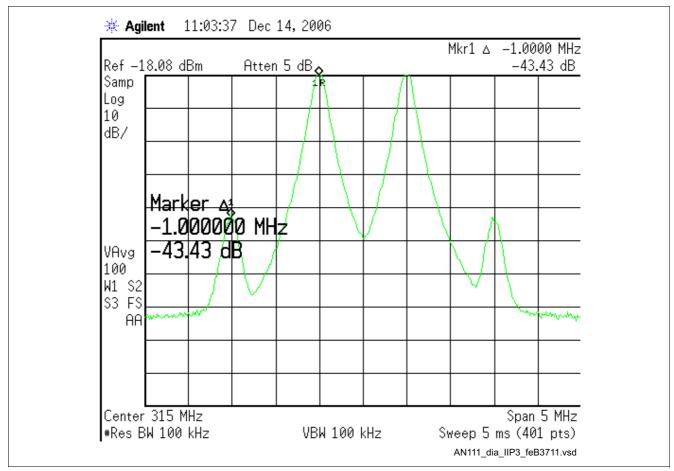


Figure 26 Input IIP₃ of Front End (BFP540ESD Plus SAW Filter B3711)

Application Note 25 Rev. 1.2, 2007-08-30

Input 1 dB compression of Front End (BFP540ESD Plus SAW Filter B3711')

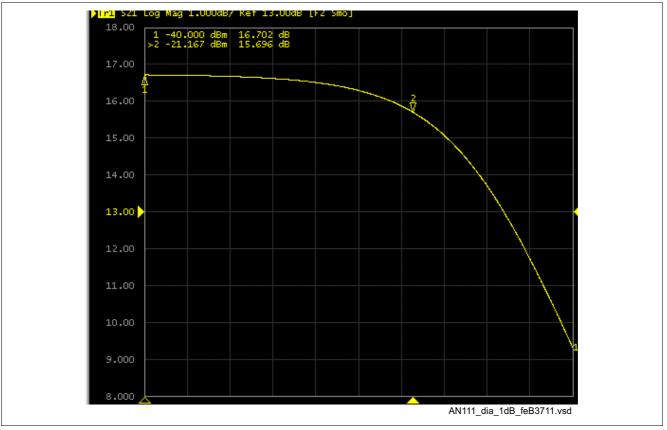


Figure 27 Input 1 dB compression of Front End (BFP540Esd Plus SAW Filter B3711)

Application Note 26 Rev. 1.2, 2007-08-30