QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 684 48V HOT SWAP CONTROLLER

LT4256-3GN

DESCRIPTION

Demonstration circuit 684 is a 48V Hot Swap™ Controller featuring the LT4256-3GN in a 2A application.

The LTC4256-3 is ideally suited for demanding power distribution control in 12V, 24V and 48V applications for hot board insertion protection, high side power switching, and electronic circuit breaker functions. The LTC4256-3 provides a rich set of features to support Hot Swap applications including:

- Over voltage shutdown
- Under voltage lockout
- Foldback inrush current limiting
- Over current circuit breaker with programmable cutout time
- Programmable output voltage ramp rate

- Selectable auto retry or latch off on over current faults
- Power good monitor
- Open MOSFET Detection

Available in a 16 lead SSOP package, the LT4256-3 is showcased on demonstration circuit DC684 configured for a 48V, 2A application. By changing a few passive components, 12V and 24V applications can easily be evaluated at up to 10 amps provided the thermal considerations of pass FET Q1 are taken into account.

Design files for this circuit board are available. Call the LTC factory.

LT and LTC are registered trademarks of Linear Technology Corporation Hot Swap is a trademark of Linear Technology Corporation

Table 1. Performance Summary $(T_A = 25^{\circ}C)$

PARAMETER	CONDITION	VALUE
Minimum Input Voltage	Determined by UVLO	37V
Maximum Input Voltage	Determined by TVS D2 breakdown Voltage	76V
Under Voltage L to H Threshold	UVLO Pin Threshold 4V±1%	36.3V±1.5%
Over Voltage L to H Threshold	OVLO Pin Threshold 4V±1%	72.5V±1.5%
Power Good L to H Threshold	FB L to H Threshold 4.45V±1%	44.9V±1.5%
Power Good H to L Threshold	FB H to L Threshold 3.99V±1%	40.2V±1.5%
Current Breaker Trip Point	$(V_{cc} - V_{SENSE}) = 55 \text{mV} \pm 20\%$	2.75A±20%
OPEN CIRCUIT Detection Threshold	$(V_{cc} - V_{SENSE}) < 3mV$	<150mA

1

QUICK START PROCEDURE

Demonstration circuit 684 is easy to set up to evaluate the performance of the LT4256-3GN. Refer to Figure 1

for proper measurement equipment setup and follow the procedure below:

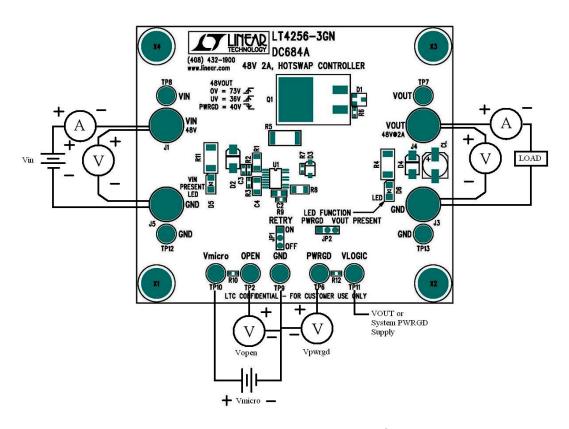


Figure 1. Proper Measurement Equipment Setup

Demonstration Circuit 684 has two user configurable jumper options:

- J1 Retry set to ON for auto retry or OFF for latch off on over-current faults
- J2 LED Function select PWRGD or VOUT PRESENT. In the former position, LED D6 will only illuminate when the output voltage crosses the 44.9V threshold. In the latter position, D6 will illuminate whenever Q1 is enhanced.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 684 48V HOT SWAP CONTROLLER

With power off, connect a nominal 48V power supply capable of supplying 3Amps to the VIN and GND turrets.

Connect a Logic level supply to the turrets labeled VLOGIC and GND to monitor the PWRGD state on the turret labeled PWRGD. This same supply can also be connected to the turret Vmicro to monitor the OPEN CIRCUIT detect on the turret labeled OPEN

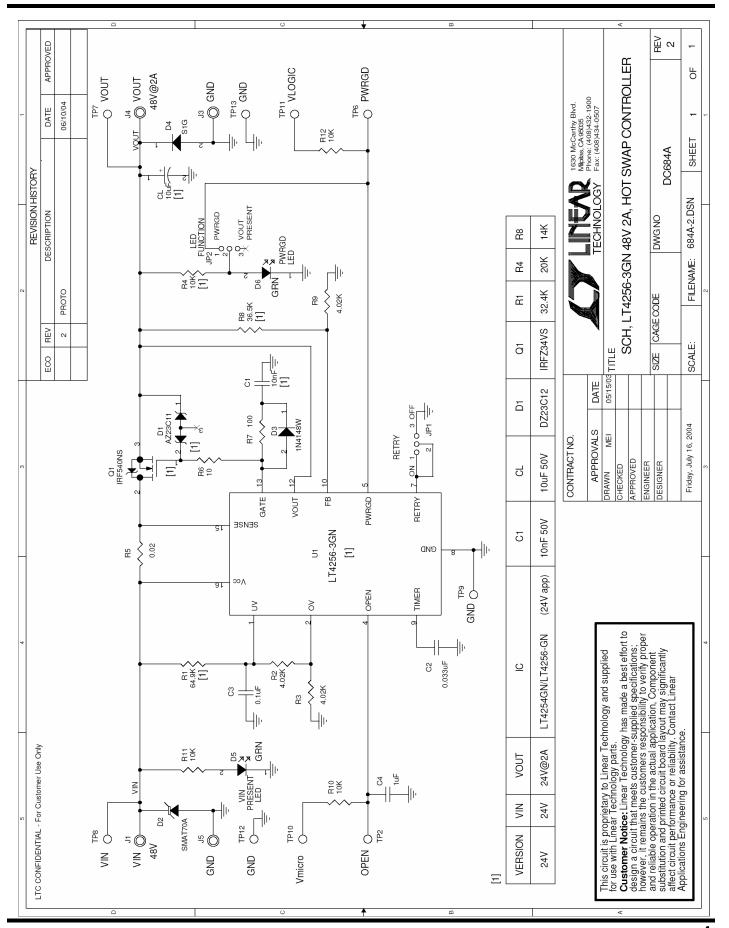
NOTE: The OPEN and PWRGD pins are provided with separate supplies to facilitate connection of the PWRGD to a DC-DC power converter which may require a different voltage than the system processor which would monitor the OPEN state.

Connect a suitable load to the VOUT and GND turrets. This load can be an electronic load or power resistors (24Ω at 100 watts for 2 amps at 48V) can be used.

NOTE: because the LT4256 incorporates foldback current limiting, the nominal startup current supplied to the load is 700mA and can be as low as 500mA. This current limit increases linearly until the FB pin exceeds 2V (VOUT > 20V). An electronic constant current load set to 2amps will not permit the circuit to turn on unless it is gated on by the PWRGD signal (as would be the case with a DC-DC converter controlled by the PWRGD signal). Resistive loading will not have this problem.

Turn on the power supplies, verify the input voltage is 48V. Verify the output voltage and the load current, the OPEN turret should present a logic LOW if the load current is >150mA and the PWRGD turret should present a logic HIGH. LED D5 and D6 should be illuminated.

With the circuit functioning, additional evaluations can now be performed. Test the under-voltage lockout and PWRGD functionality by reducing the input voltage below 35V. Observe the trip points of the PWRGD and undervoltage lockout. Increase the input voltage back to 48V and again observe the trip point of the PWRGD.


The over voltage function can also be tested, but be aware that if resistive loads are used, the value must be increased to 36Ω to prevent an over current fault. This test can also be performed without a load.

Over current faults can be evaluated by increasing the output load current and observing the over current trip point.

Circuit Testing Notes: As in all high current testing, it is a good idea to use twisted pair power leads to minimize circuit inductance. Under step loads significant voltage spikes can occur as a result of this inductance causing false over voltage or under voltage trips. If there is significant lead length between the power supply and the DC684, add additional bulk capacitance across the VIN and GND turrets. This capacitance may also be needed if stepping the load results in significant voltage steps on the input, particularly if performing tests of the circuit breaker function.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 684 48V HOT SWAP CONTROLLER

Item	Qty	Ref-Des	Desc	Manufacturer's Part Number
1	1	CL	CAP, ELECTROLYTIC 10uF 100V 20%	SANYO 100CV10FS
2	1	C1	CAP, X7R 0.01uF 100V 10% 1206	AVX 12061C103KATMA
3	1	C2	CAP, X7R 0.033uF 50V 5% 0805	AVX 08055C333JAT
4	1	C3	CAP, X7R 0.1uF 50V 10% 0603	TDK C1608X7R1H104K
5	1	C4	CAP, X5R 1uF 25V 20% 1206	TAIYO YUDEN TMK316BJ105ML
6	1	D1	DIODE, DUAL, ZENER 300mW	DIODES INC. AZ23C11
7	1	D2	DIODE, TRANSIENT VOLTAGE SUPPRESSOR	DIODES INC. SMAT70A
8	1	D3	DIODE, 1N4148W SOD123	DIODES INC. 1N4148W
9	1	D4	DIODE, S1G 1A SMA	DIODES INC. S1G
10	2	D5,D6	LED, GREEN	PANASONIC LN1351C-(TR)
11	2	JP2,JP1	HEADER,3PIN, 2mm	COMM CON 2802S-03G2
12	2	JP2,JP1	SHUNT	COMM CON CCIJ2MM-138G
13	4	J1,J3,J4,J5	JACK, BANANA	KEYSTONE 575-4
14	1	Q1	XSTR, HEXFET POWER MOSFET	INT. RECT. IRF540NS
15	1	R1	RES, 64.9K OHM 1% 1/4W 1206	AAC CRL18-6492FM
16	3	R2,R3,R9	RES, 4.02K OHM 1% 1/10W 0603	AAC CR16-4021FM
17	2	R11,R4	RES, 10K OHMS 5% 1/2W 2010	AAC CR12-103JM
18	1	R5	RES, 0.02 OHM 5% 1W 2512	IRC LRF2512-01-R020-J
19	1	R6	RES, 10 OHM 1% 1/10W 0603	AAC CR16-10R0FM
20	1	R7	RES, 100 OHMS 5% 1/10W 0603	AAC CR16-101JM
21	1	R8	RES, 36.5K OHM 1% 1/4W 1206	AAC CRL18-3652FM
22	2	R10,R12	RES, 10K OHMS 5% 1/10W 0603	AAC CR16-103JM
23	9	TP2,TP6,TP7-TP13	TURRET	MILL-MAX 2501-2
24	1	U1	IC, LT4256-3GN HOT SWAP CONTROLLER	LINEAR TECH. LT4256-3GN
25	0	U1 - ALTERNATE	IC, LT4254GN HOT SWAP CONTROLLER	LINEAR TECH. LT4254GN