Quarter Brick High Voltage, 3.3V, 30A Reference Design

National Semiconductor RD-183 Ajay Hary March 28, 2010

1.0 Design Specifications

Inputs	Output #1	
VinMin=36V	Vout1=3.3V	
VinMax=75V	lout1=up to 30A	

2.0 Design Description

The LM5035C evaluation board is designed to provide the design engineer with a fully functional power converter based on the Half Bridge topology to evaluate the LM5035C controller.

The LM5035C is a functional variant of the LM5035B Half-Bridge PWM Controller. The amplitude of the SR control signals are 5V instead of the VCC level. The evaluation board is provided in an industry standard quarter-brick footprint.

3.0 Features

The performance of the evaluation board is as follows:

- Input operating range: 36V to 75V
- Output voltage: 3.3VOutput current: 0 to 30A
- Measured efficiency: 89% at 30A, 92% at 15A
- Frequency of operation: 400 kHz
 Board size: 2.28 x 1.45 x 0.5 inches
- Load Regulation: 0.2%Line Regulation: 0.1%
- Line UVLO (33.9V/31.9V on/off)
- Line OVP (79.4V/78.3V off/on)
- Hiccup current limit

4.0 Schematic

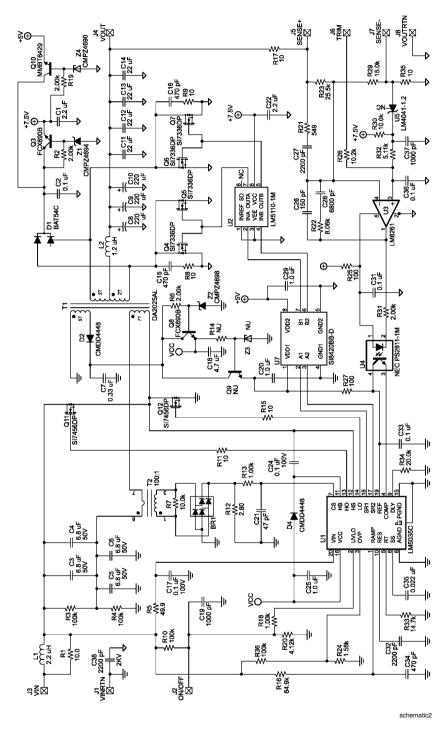
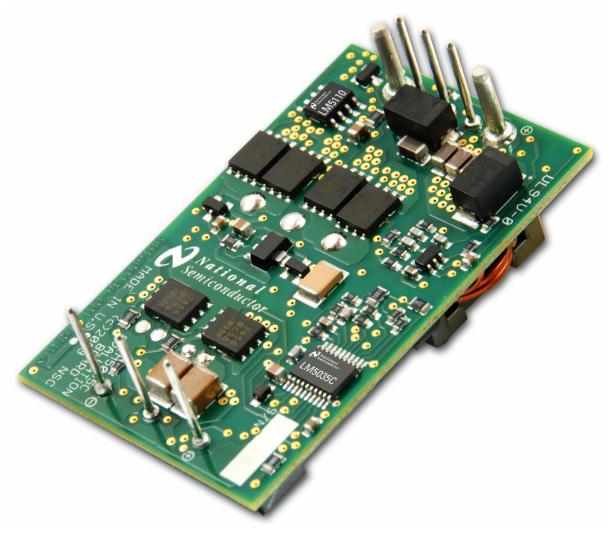


FIGURE 1. Application Circuit: Input 36 to 75V, Output 3.3V, 30A

5.0 Bill of Materials

Item	Part Description	Qty	Ref Designator	Remark	
1	LM5035C Controller MH20	1	U1	NSC LM5035CMH	
2	LM5110-1M Dual Driver	1	U2	NSC LM5110-1M	
3	LM8261M5 Op Amp SOT23-5	1	U3	NSC LM8261M5	
4	LM4041AIM3-1.2 Ref Amp SOT23	1	U5	NSC LM4041AIM312	
5	Opto-Coupler PS2811-1M	1	U4	NEC PS2811-1M	
6	Digital Isolator IC SOIC-8	1	U6	Silicon Labs SI8420BB-I	
7	Cer Cap 47pF 50V COG 0603	1	C21	TDK C1608COG1H470.	
8	Cer Cap 150pF 50V COG 0603	1	C26	TDK C1608COG1H151	
9	Cer Cap 470pF 50V COG 0603	1	C34	TDK C1608COG1H471	
10	Cer Cap 1000pF 50V X7R 0603	2	C19, C37	TDK C1608X7R1H102k	
11	Cer Cap 2000pF 50V COG 0603	2	C27, C32	TDK C1608COG1H222	
12	Cer Cap 6800pF 50V COG 0603	1	C28	TDK C1608COG1H682	
13	Cer Cap 0.022uF 25V COG 0603	1	C35	TDK C1608COG1E223	
14	Cer Cap 0.1uF 50V X7R 0603	3	C2, C33, C36	TDK C1608X7R1H104k	
15	Cer Cap 1.0uF 16V X7R 0603	2	C25, C31, C29, C20	TDK C1608X7R1C105h	
16	Cer Cap 470pF 50V COG 0805	2	C15, C16	KEMT	
				C0805C471M5RAC	
17	Cer Cap 0.1uF 100V X7R 0805	2	C17, C24	TDK C2012X7R2A104F	
18	Cer Cap 0.33uF 50V X7R 0805	1	C7	TDK C2012X7R1H334	
19	Cer Cap 2.2uF 16V X7R 0805	2	C1, C22	TDK C2012X7R1C225	
20	Cer Cap 4.7uF 16V X7R 1206	1	C18	TDK C3216X7R1C475	
21	Cer Cap 22uF 6.3V X5R 1206	4	C11-C14	TDK C3216X5R0J226N	
22	Cer Cap 2200pF 2000V X7R 1812	1	C38	TDK C4532X7R3D2221	
23	Cer Cap 6.8uF 50V X7R 1812	4	C3-C6	TDK C4532X7R1H685N	
24	POSCAP 220uF 6.3V	3	C8-C10	Sanyo 6TPE220MI	
25	Res 2.8 Ohm 0.1W 1% 0603	1	R12	Vishay CRCW06032R80F	
26	Res 10 Ohm 0.1W 1% 0603	2	R17, R35	Vishay CRCW060310R0F	
27	Res 100 Ohm 0.1W 1% 0603	3	R25, R27	Vishay CRCW06031000F	
28	Res 549 Ohm 0.1W 1% 0603	1	R21	Vishay CRCW06035490F	
29	Res 1K Ohm 0.1W 1% 0603	4	R13, R18	Vishay CRCW06031001F	
30	Res 1.58K Ohm 0.1W 1% 0603	1	R24	Vishay CRCW06031581F	
31	Res 2.0K Ohm 0.1W 1% 0603	1	R31	Vishay CRCW06032001F	
32	Res 4.12K Ohm 0.1W 1% 0603	1	R20	Vishay CRCW06034121F	
33	Res 5.11K Ohm 0.1W 1% 0603	1	R32	Vishay CRCW06035111F	
34	Res 8.06K Ohm 0.1W 1% 0603	1	R22	Vishay CRCW06038061F	
35	Res 10K Ohm 0.1W 1% 0603	2	R7, R30	Vishay CRCW06031002F	
36	Res 10.2K Ohm 0.1W 1% 0603	1	R26	Vishay CRCW06031022F	
37	Res 14.7K Ohm 0.1W 1% 0603	1	R33, R46	Vishay CRCW06031472F	


Item	Part Description	Qty	Ref Designator	Remark
38	Res 15K Ohm 0.1W 1% 0603	1	R29, R41	Vishay CRCW06031502F
39	Res 20K Ohm 0.1W 1% 0603	1	R34	Vishay CRCW06032002F
40	Res 25.5K Ohm 0.1W 1% 0603	1	R23	Vishay CRCW06032552F
41	Res 100K Ohm 0.1W 1% 0603	2	R3, R4	Vishay CRCW06031003F
42	NU 0805	1	R14	NU
43	Res 10 OHM 1/10W 1% 0805	3	R1, R11, R15	Vishay CRCW080510R0F
44	Res 49.9 OHM 1/10W 1% 0805	1	R5	Vishay CRCW080549R9F
45	Res 2K OHM 1/10W 1% 0805	1	R2, R19	Vishay CRCW08052001F
46	Res 10K OHM 1/10W 1% 0805	1	R6	Vishay CRCW08051002F
47	Res 64.9K OHM 1/10W 1% 0805	1	R16	Vishay CRCW08056492F
48	Res 100K OHM 1/10W 1% 0805	2	R10, R36	Vishay CRCW08051003F
49	Res 10 OHM 1% 2010	2	R8, R9	Vishay CRCW201010R0F
50	Schottky, Diode, 75V 150mA SOT23	1	D1	BAV70-TP
51	Diode, 75V 250mA SOD-323	2	D2, D4	Central CMDD4448
52	Diodes, Rectifier, Bridge, 30V	1	BR1	BAT54BRW
53	Zener 8.2V 5% SOT23	1	Z1	Central CMPZ4694
54	Zener 11V 5% SOT23	1	Z2	Central CMPZ4698
55	Zener 5.6V, 5% SOT23	1	Z4	Central CMPZ4690
	NU SOT23	1	Z3	NU
56	N-FET 100V 25m ohm	2	Q1, Q2	Vishay Si7456DP
57	N-FET 30V 3m ohm	4	Q4-7	Vishay Si7336ADP
58	NPN, ZETEX 45V 2A	2	Q3, Q8	ZETEX FCX690B
59	NPN, ON SEMI 45V, 225mW	1	Q10	MMBT6429LT1G
60	NU	1	Q9	NU
61	Inductor 2.2uH 5.4A	1	L1	TDK RLF7030T-2R2M5R4
62	Inductor 1.2uH 37A	1	L2	Coilcraft SER2010-122MX
63	Transformer 8:5:2:2	1	T1	Coilcraft DA2025-AL
64	Current XFR 100:1, 10A	1	T2	Pulse Engr P8208
65	Test Pin, Brick 0.040X0.5	6	J1–3, J5–7	Mill-Max 3104-2-00-80-00-00-08-
66	Test Pin, Brick 0.080X0.375	2	J4, J8	Mill-Max 3231-2-00-01-00-00-08- 0

6.0 Other Operating Values

Operating Values

Description	Parameter	Value	Unit
Modulation Frequency	Frequency	400	KHz
Total output power	Pout	100	W
Control scheme	Control scheme	Half-Bridge	
Static load regulation	Static load	200	mV
Static Line regulation	Static Line	100	mV
Steady State Efficiency (at 30A)	Efficiency	89	%
Steady State Efficiency (at 15A)	Efficiency	92	%

7.0 Board Photos

boardphoto1

FIGURE 4. LM5035CEVAL Board Photo

8.0 Hardware Description

A through discussion of this design can be found in <u>Application Note 2043</u> LM5035CEVAL Evaluation Board Documentation (http://www.national.com/an/AN/AN-2043.pdf)	The manufacturing files for this design are located at: RD-183 (http://www.national.com/rd/RDhtml/RD-183.html)

Notes

National Semiconductor's design tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Reference designs are created using National's published specifications as well as the published specifications of other device manufacturers. While National does update this information periodically, this information may not be current at the time the reference design is built. National and/or its licensors do not warrant the accuracy or completeness of the specifications or any information contained therein. National and/or its licensors do not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. National and/or its licensors do not warrant that the designs are production worthy. You should completely validate and test your design implementation to confirm the system functionality for your application.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, 2.

 (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530-85-86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +49 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560