
AN01241-03 Copyright © 2006–2009 Texas Instruments

Application Note

Using a Stellaris® Microcontroller as an I/O
Processor

Application Note Using a Stellaris® Microcontroller as an I/O Processor

June 24, 2009 2

Copyright
Copyright © 2006–2009 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments.
ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property
of others.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com

Application Note Using a Stellaris® Microcontroller as an I/O Processor

June 24, 2009 3

Table of Contents
Introduction ... 4
The Case for an I/O Processor ... 4

I/O System Options... 5
Host CPU Interfaces ... 5

The Stellaris Advantage.. 5
Development and Debugging ... 5
Architecture... 6
I/O Processor Design.. 6
Functional Description .. 7

I/O Processor Example Source Code... 8
Conclusion .. 13
References ... 14

Application Note Using a Stellaris® Microcontroller as an I/O Processor
Introduction
Despite best efforts to bring all I/O functions on-chip, high-end embedded microprocessors often
need help when interfacing to peripheral circuits. These additional interface circuits have required
programmable logic devices (PLDs), discrete logic, dedicated function integrated circuits (ICs), and
8-bit microcontrollers. Stellaris® microcontrollers offer several significant advantages over these I/O
solutions.

This application note covers background information on I/O processors, architectural considerations,
and a practical implementation example. The design example uses a UART interface to add a PS/2
keyboard interface, I/O lines, and an audio beeper.

The Case for an I/O Processor
In an ideal world, the high-end microprocessor used in a design would have the perfect mix of
on-chip peripherals. The peripherals would be available at the desired pins and there would be no
system latency issues. In reality, there are many factors to complicate I/O implementation. Table 1
lists the most common reasons to consider adding an I/O processor to a system.

Using a Stellaris microcontroller as an I/O processor can address all common I/O system problems.

Table 1. I/O Processor Considerations

I/O Interfacing Problem Description Solved by I/O
Processor?

Pin-multiplexing conflict Two conflicting functions are needed from a single physical pin. Yes

Low-power considerations System has peripheral functions that must remain active while the
microprocessor is in power-saving sleep mode.

Yes

Pin-count constraints Even with high pin-count BGA packaging, I/O pins may be in short
supply.

Yes

Operating-system latency Either operating-system latency exceeds the real-time requirements
of the peripheral, or responding to thousands of real-time interrupts
each second places an unacceptable load on performance.

Yes

Electrical isolation It is often impractical to individually isolate each I/O channel,
especially where analog signals are involved.

Yes

Wiring constraints I/O processors can significantly reduce inter-PCB wiring complexity. Yes

Logic levels Most microprocessors in this class do not have 5 V-tolerant pins. Yes

Electrical noise On-chip analog circuit performance can be compromised by
high-speed digital switching.

Yes
June 24, 2009 4

Application Note Using a Stellaris® Microcontroller as an I/O Processor
I/O System Options
Table 2 examines a range of different solutions. Microcontrollers in general are the most versatile
solution, with the Stellaris microcontroller providing both an economical solution and a common tool
chain with the host CPU.

Host CPU Interfaces
An important consideration is the type of interface between the I/O processor and the host
microprocessor. Stellaris microcontrollers offer three types of serial interface to the host
microcontroller. Table 3 lists the attributes of each serial bus.

Figure 1 shows a Stellaris microcontroller interfaced to a host microprocessor using an I2C serial
interface. I2C has the advantage of supporting multiple slave devices with only two wires.

The Stellaris Advantage

Development and Debugging
A significant benefit of using a Stellaris microcontroller in a system containing other ARM devices is
the ability to use common development tools. All microcontroller targets in a system can use the
same Integrated Development Environment (IDE) and debugger hardware, which reduces
development time and budget.

Table 2. Comparison of Available Solutions

Possible Solution Digital I/O Analog I/O ARM Architecture Intelligence Cost

CPLD Yes No No No Low

FPGA Yes No No No Medium/High

I2C/SPI Peripherals Yes Yes No No Medium

MCU 8-bit Yes Yes No Yes Low

MCU Cortex-M3 Yes Yes Yes Yes Low

Table 3. Serial Bus Attributes

Serial Bus Wire Count Typical Maximum
Speed Typical Distance Easy to Isolate

I2C 2 100/400 kbps < 1M No

SSI (SPI) 4 100 kHz – 10 MHz < 1M Yes

UART 2 460.8 kbps Depends on drivers Yes
June 24, 2009 5

Application Note Using a Stellaris® Microcontroller as an I/O Processor
Architecture
Stellaris microcontrollers use ARM’s Cortex-M3 processors—part of the ARMv7 family. Thumb-2
technology combines both 16-bit and 32-bit instructions for high-performance processing.

Compared to earlier ARM generations, Cortex-M3 provides improved interrupt-handling capabilities,
which are essential in time-critical, embedded-control applications. The Cortex-M3’s Nested
Vectored Interrupt Controller (NVIC) reduces the number of clock cycles needed to enter an interrupt
by up to 70%. I/O processing code can move quickly and efficiently between multiple prioritized
interrupt sources.

For total flexibility, Stellaris microcontrollers also allow any GPIO pin to be configured as an edge- or
level-sensitive interrupt.

Figure 1. Stellaris Microcontroller Interfaced to a Host Microprocessor Using an I2C Serial
Interface

I/O Processor Design
The following design adds the following three interfaces to a low-cost, high-end embedded
microprocessor system:

PS/2 keyboard interface

Eight general-purpose output pins

Audio beeper

PA0/U0Rx11
PA1/U0Tx12
PA2/SSIClk13
PA3/SSIFss14
PA4/SSIRx15
PA5/SSITx16

VDD 7
VDD 17
VDD 22

GND8
GND18
GND21

RST5 LDO 6

OSC09
OSC110

PC0/TCK/SWCLK28
PC1/TMS/SWDIO27
PC2/TDI26
PC3/TDO/SWO25

PB0/CCP0 19
PB1/32KHz 20

PB2/I2CSCL 23
PB3/I2CSDA 24

PB4/C0- 4
PB5/C1-/C0o 3

PB6/C0+/CCP1 2
PB7/TRST 1

U1

LM3S102

HOST MCU

ARM9

ARM11

XSCALE

R1
10K

R2
10K

+3V +3V

1 2
Y1

6.00MHZ

GND
18PF

C1

18PF

C2

GND GND

OSC0
OSC1

RESETn

0.1UF

C3

0.1UF

C4

GND GND

+3V

0.1UF

C5

1UF

C6

GND GND

LDO

SYSTEM I/O

CIRCUITS

I2C INTERFACE

TO OTHER I2C DEVICES

SD
A

SC
L

INTERRUPT

MIPS

+3V
June 24, 2009 6

Application Note Using a Stellaris® Microcontroller as an I/O Processor
Interfacing a PS/2 port directly to an embedded microprocessor presents several challenges:

The host microprocessor does not have a PS/2 interface on-chip.

The PS/2 is a 5 V interface.

The PS/2 keyboard clocks out data at more than 10 kHz. The format is not compatible with SPI or
I2C, so receiving this data stream either requires specialized hardware or an interrupt on each
clock. This is either not achievable with most embedded operating systems, or an inefficient use
of microprocessor bandwidth.

These three challenges are easily resolved by selecting a Stellaris microcontroller as an I/O
processor.

A Stellaris LM3S101 microcontroller can perform all three functions for about $1.00 with resources to
spare for future expansion. This example communicates to the host using a UART interface and a
simple ASCII-based protocol. Replacing the microcontroller with an LM3S102 device would enable
I2C communication to the host CPU.

Functional Description
The keyboard generates synchronous PS/2 clock and data signals to the LM3S101 microcontroller
at 10-15 kHz. The LM3S101 microcontroller monitors these signals, clocks in the data stream, and
verifies parity. The PS/2 interface is actually a bi-directional interface, but only keyboard transmit is
demonstrated in this example.

Once a byte has been received and verified, the LM3S101 microcontroller software writes the data to
the UART for transmission to the host microprocessor. The software could be expanded to convert
the PS/2 scan codes to ASCII equivalents before they are relayed.

The entire I/O interface circuit is shown in Figure 2.

The software listing in the I/O Processor Example Source Code on page 8 uses the Stellaris family
driver library, DriverLib. to simplify Stellaris peripheral accesses.

Protocol
This example uses a very simple one-byte ASCII protocol for commands from the host
microcontroller:

0..7 control digital outputs 0..7

b and m control the beeper

Communication to the host microprocessor consists entirely of scan code data—in this case a series
of codes known as Set 2. Each physical key in the keyboard generates unique byte sequences for
make (key down) and break (key released). For example, the A key generates 0x1C for make, and
0xF0 0x1C for break.
June 24, 2009 7

Application Note Using a Stellaris® Microcontroller as an I/O Processor
Figure 2. I/O Interface Circuit

I/O Processor Example Source Code

//***
//
// AN3_main.c - Example Program for Luminary Micro Application Note 3
// "Using Stellaris as an I/O Processor"
//
// Manages PS/2 keyboard, beeper and GP output functions for a host microprocessor
//
// Copyright (c) 2006 Luminary Micro, Inc. All rights reserved.
//
// Software License Agreement
//
// Luminary Micro, Inc. (LMI) is supplying this software for use solely and
// exclusively on LMI's Stellaris Family of microcontroller products.
//
// The software is owned by LMI and/or its suppliers, and is protected under
// applicable copyright laws. All rights are reserved. Any use in violation
// of the foregoing restrictions may subject the user to criminal sanctions
// under applicable laws, as well as to civil liability for the breach of the
// terms and conditions of this license.
//
// THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// LMI SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR

PA0/U0Rx11
PA1/U0Tx12
PA2/SSIClk13
PA3/SSIFss14
PA4/SSIRx15
PA5/SSITx16

VDD 7
VDD 17
VDD 22

GND8
GND18
GND21

RST5 LDO 6

OSC09
OSC110

PC0/TCK/SWCLK28
PC1/TMS/SWDIO27
PC2/TDI26
PC3/TDO/SWO25

PB0/CCP0 19
PB1/32KHz 20

PB2/I2CSCL 23
PB3/I2CSDA 24

PB4/C0- 4
PB5/C1-/C0o 3

PB6/C0+/CCP1 2
PB7/TRST 1

U1

LM3S102

HOST MCU

1 2

Y1
6.00MHZ

GND

18PF

C1

18PF

C2

GND GND

OSC0
OSC1

RESETn

0.1UF

C3

0.1UF

C4

GND GND

+3V

0.1UF

C5

1UF

C6

GND GND

LDO

1
2
3
4
5
6

J1PS2-6PIN

HOST_TXD
HOST_RXD

R11
10K

R12
10K

+3V

PS/2 KEYBOARD

EIGHT GPIO
LINES

D8
R8

330

D1
R1

330

GND

+5V

GND +

-

BZ1
CEM-1206S

Q9
MMBT3904

R10
33

R9

2.7K

+3V

+3V
June 24, 2009 8

Application Note Using a Stellaris® Microcontroller as an I/O Processor
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
//***

#include "../../StellarisWare/hw_memmap.h"
#include "../../StellarisWare/hw_types.h"
#include "../../StellarisWare/hw_ints.h"
#include "../../StellarisWare/driverlib/sysctl.h"
#include "../../StellarisWare/driverlib/uart.h"
#include "../../StellarisWare/driverlib/gpio.h"
#include "../../StellarisWare/driverlib/timer.h"
#include "../../StellarisWare/driverlib/interrupt.h"

//***
//
// States for PS/2 receive state-machine
//
//***
enum
{
 PS2_STATE_IDLE,
 PS2_STATE_DATA,
 PS2_STATE_PARITY,
 PS2_STATE_STOP,
 PS2_STATE_DONE
};

//***
//
// The value of PS/2 receive state-machine
//
//***
volatile unsigned char g_ucPS2State;

//***
//
// PS/2 receive data value
//
//***
volatile unsigned long g_ulScanCode;

//***
//
// PS/2 receive parity count value
//
//***
unsigned char g_ucParity;

//***
//
// PS/2 data bit count value
//
//***
unsigned char g_ucDataBitCount;

//***
//
June 24, 2009 9

Application Note Using a Stellaris® Microcontroller as an I/O Processor
// Read and return the logic level of PS/2 Dat signal on PA5.
//
//***
char
Ps2DatIn(void)
{
 if(GPIOPinRead(GPIO_PORTA_BASE, 0x20) == 0x20)
 {
 return(1);
 }
 else
 {
 return(0);
 }
}

//***
//
// The NVIC calls this ISR every time there's a falling edge on the PS/2
// clock input.
//
//***
void
PORTaISR(void)
{
 //
 // Clear the interrupt
 //
 GPIOPinIntClear(GPIO_PORTA_BASE, 0x10);

 //
 // Determine current receiver state
 //
 switch(g_ucPS2State)
 {
 case PS2_STATE_IDLE:
 {
 //
 // We were Idle, so check that the start bit is valid.
 // If it is then move to Data receive state
 //
 if(Ps2DatIn() == 0)
 {
 g_ucPS2State = PS2_STATE_DATA;
 g_ulScanCode = 0;
 g_ucParity = 0;
 g_ucDataBitCount = 0;
 }
 else
 {
 g_ucPS2State = PS2_STATE_IDLE;
 }
 break;
 }

 case PS2_STATE_DATA:
 {
June 24, 2009 10

Application Note Using a Stellaris® Microcontroller as an I/O Processor
 //
 // Read in a data bit, LSB first, and
 // increment parity count if it is a '1'
 //
 g_ulScanCode >>= 1;
 if(Ps2DatIn())
 {
 g_ulScanCode |= 0x80;
 g_ucParity++;
 }
 if(++g_ucDataBitCount == 8)
 {
 g_ucPS2State = PS2_STATE_PARITY;
 }
 break;
 }

 case PS2_STATE_PARITY:
 {
 //
 // If theParity bit matches move to the Stop bit state
 //
 if((g_ucParity & 0x01) == Ps2DatIn())
 {
 g_ucPS2State = PS2_STATE_IDLE;
 }
 else
 {
 g_ucPS2State = PS2_STATE_STOP;
 }
 break;
 }

 case PS2_STATE_STOP:
 {
 //
 // If the stop bit is not a '1', then fail
 //
 if(Ps2DatIn()==0)
 {
 g_ucPS2State = PS2_STATE_IDLE;
 }
 else
 {
 g_ucPS2State = PS2_STATE_DONE;
 }
 break;
 }
 }
}

//***
//
// Main function for the I/O processor loop
//
//***
int
June 24, 2009 11

Application Note Using a Stellaris® Microcontroller as an I/O Processor
main(void)
{
 unsigned char ucLedState;
 int iCode;

 //
 // Enable the peripherals used by this application
 //
 SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
 SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

 //
 // Set up GPIO B[6:1] as outputs
 // Don't use B7, it is for JTAG!!
 //
 GPIODirModeSet(GPIO_PORTB_BASE, 0x7e, GPIO_DIR_MODE_OUT);

 //
 // Set up GPIO A[3:2] as outputs, and A[5:4] as PS/2 port inputs
 //
 GPIODirModeSet(GPIO_PORTA_BASE, 0x0c, GPIO_DIR_MODE_OUT);
 GPIODirModeSet(GPIO_PORTA_BASE, 0x30, GPIO_DIR_MODE_IN);

 //
 // Set MCU clock to 20 MHz
 //
 SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
 SYSCTL_XTAL_6MHZ);

 //
 // Setup UART for serial communications to host MCU (115,200 baud, 8-N-1)
 //
 GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
 UARTConfigSet(UART0_BASE, 115200, (UART_CONFIG_WLEN_8 |
 UART_CONFIG_STOP_ONE |
 UART_CONFIG_PAR_NONE));
 //
 // Configure Timer 0 for 50% PWM output at 600 Hz, ready to generate beep
 //
 TimerConfigure(TIMER0_BASE, TIMER_CFG_16_BIT_PAIR | TIMER_CFG_A_PWM);
 TimerLoadSet(TIMER0_BASE, TIMER_A, 0x8000);
 GPIODirModeSet(GPIO_PORTB_BASE, 0x01, GPIO_DIR_MODE_HW);
 TimerMatchSet(TIMER0_BASE, TIMER_A, 0x4000);

 //
 // Enable interrupts to the processor.
 //
 IntMasterEnable();

 //
 // Set up to interrupt on falling edge of PS/2 clock signal
 //
 IntPrioritySet(INT_GPIOA, 0x00);
 GPIOIntTypeSet(GPIO_PORTA_BASE, 0x10, GPIO_FALLING_EDGE);
 GPIOPinIntEnable(GPIO_PORTA_BASE, 0x10);
June 24, 2009 12

Application Note Using a Stellaris® Microcontroller as an I/O Processor
 IntEnable(INT_GPIOA);

 //
 // Start main processing loop
 //
 ucLedState=0;
 while (1)
 {
 //
 // Check for receive character from Host MCU
 //
 if(UARTCharsAvail(UART0_BASE))
 {
 iCode = UARTCharGet(UART0_BASE);

 //
 // If the received char is '0'..'7', toggle the corresponding LED
 //
 if((iCode >= '0') && (iCode <= '7'))
 {
 ucLedState ^= (1 << (iCode - 0x30));
 GPIOPinWrite(GPIO_PORTB_BASE, 0x7e, ucLedState << 1);
 GPIOPinWrite(GPIO_PORTA_BASE, 0x0c, ucLedState >> 4);
 }

 //
 // 'b' starts a beep. 'm' mutes it
 //
 if(iCode == 'b')
 {
 TimerEnable(TIMER0_BASE, TIMER_A);
 }
 if(iCode == 'm')
 {
 TimerDisable(TIMER0_BASE, TIMER_A);
 }
 }

 //
 // Check for scan code ready
 //
 if(g_ucPS2State == PS2_STATE_DONE)
 {
 UARTCharPut(UART0_BASE, g_ulScanCode);
 g_ucPS2State = PS2_STATE_IDLE;
 }
 }
 return(0);
}

Conclusion
A Stellaris microcontroller programmed as an I/O processor can solve difficult interfacing issues
when working with high-end embedded microprocessors. A simple serial interface can support a rich
set of I/O types, and preprocessing by the I/O microcontroller further reduces host microprocessor
June 24, 2009 13

Application Note Using a Stellaris® Microcontroller as an I/O Processor
overhead. With Stellaris, developers gain the advantage of a common tool chain, while providing an
economical and effective system solution.

References
The following documents are available for download at www.luminarymicro.com:

LM3S101 Microcontroller Data Sheet, Publication Number DS-LM3S101

StellarisWare® Driver Library User’s Manual, publication number SW-DRL-UG

In addition, the following document may be useful:

The PS/2 Mouse/Keyboard Protocol by Adam Chapweske, www.Computer-Engineering.org
June 24, 2009 14

Application Note Using a Stellaris® Microcontroller as an I/O Processor
Important Notice
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically
governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,
and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their
products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support
that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of
TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
 Copyright © 2009, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless
June 24, 2009 15

	Introduction
	The Case for an I/O Processor
	I/O System Options
	Host CPU Interfaces

	The Stellaris Advantage
	Development and Debugging
	Architecture
	I/O Processor Design
	Functional Description

	I/O Processor Example Source Code
	Conclusion
	References
	Important Notice

