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Introduction
Despite best efforts to bring all I/O functions on-chip, high-end embedded microprocessors often 
need help when interfacing to peripheral circuits. These additional interface circuits have required 
programmable logic devices (PLDs), discrete logic, dedicated function integrated circuits (ICs), and 
8-bit microcontrollers. Stellaris® microcontrollers offer several significant advantages over these I/O 
solutions.

This application note covers background information on I/O processors, architectural considerations, 
and a practical implementation example. The design example uses a UART interface to add a PS/2 
keyboard interface, I/O lines, and an audio beeper.

The Case for an I/O Processor
In an ideal world, the high-end microprocessor used in a design would have the perfect mix of 
on-chip peripherals. The peripherals would be available at the desired pins and there would be no 
system latency issues. In reality, there are many factors to complicate I/O implementation. Table 1 
lists the most common reasons to consider adding an I/O processor to a system.

Using a Stellaris microcontroller as an I/O processor can address all common I/O system problems.

Table 1. I/O Processor Considerations

I/O Interfacing Problem Description Solved by I/O 
Processor?

Pin-multiplexing conflict Two conflicting functions are needed from a single physical pin. Yes

Low-power considerations System has peripheral functions that must remain active while the 
microprocessor is in power-saving sleep mode.

Yes

Pin-count constraints Even with high pin-count BGA packaging, I/O pins may be in short 
supply.

Yes

Operating-system latency Either operating-system latency exceeds the real-time requirements 
of the peripheral, or responding to thousands of real-time interrupts 
each second places an unacceptable load on performance.

Yes

Electrical isolation It is often impractical to individually isolate each I/O channel, 
especially where analog signals are involved.

Yes

Wiring constraints I/O processors can significantly reduce inter-PCB wiring complexity. Yes

Logic levels Most microprocessors in this class do not have 5 V-tolerant pins. Yes

Electrical noise On-chip analog circuit performance can be compromised by 
high-speed digital switching.

Yes
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I/O System Options
Table 2 examines a range of different solutions. Microcontrollers in general are the most versatile 
solution, with the Stellaris microcontroller providing both an economical solution and a common tool 
chain with the host CPU.

Host CPU Interfaces
An important consideration is the type of interface between the I/O processor and the host 
microprocessor. Stellaris microcontrollers offer three types of serial interface to the host 
microcontroller. Table 3 lists the attributes of each serial bus.

Figure 1 shows a Stellaris microcontroller interfaced to a host microprocessor using an I2C serial 
interface. I2C has the advantage of supporting multiple slave devices with only two wires.

The Stellaris Advantage

Development and Debugging
A significant benefit of using a Stellaris microcontroller in a system containing other ARM devices is 
the ability to use common development tools. All microcontroller targets in a system can use the 
same Integrated Development Environment (IDE) and debugger hardware, which reduces 
development time and budget.

Table 2. Comparison of Available Solutions

Possible Solution Digital I/O Analog I/O ARM Architecture Intelligence Cost

CPLD Yes No No No Low

FPGA Yes No No No Medium/High

I2C/SPI Peripherals Yes Yes No No Medium

MCU 8-bit Yes Yes No Yes Low

MCU Cortex-M3 Yes Yes Yes Yes Low

Table 3. Serial Bus Attributes

Serial Bus Wire Count Typical Maximum 
Speed Typical Distance Easy to Isolate

I2C 2 100/400 kbps < 1M No

SSI (SPI) 4 100 kHz – 10 MHz < 1M Yes

UART 2 460.8 kbps Depends on drivers Yes
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Architecture
Stellaris microcontrollers use ARM’s Cortex-M3 processors—part of the ARMv7 family. Thumb-2 
technology combines both 16-bit and 32-bit instructions for high-performance processing.

Compared to earlier ARM generations, Cortex-M3 provides improved interrupt-handling capabilities, 
which are essential in time-critical, embedded-control applications. The Cortex-M3’s Nested 
Vectored Interrupt Controller (NVIC) reduces the number of clock cycles needed to enter an interrupt 
by up to 70%. I/O processing code can move quickly and efficiently between multiple prioritized 
interrupt sources.

For total flexibility, Stellaris microcontrollers also allow any GPIO pin to be configured as an edge- or 
level-sensitive interrupt.

Figure 1. Stellaris Microcontroller Interfaced to a Host Microprocessor Using an I2C Serial 
Interface

I/O Processor Design
The following design adds the following three interfaces to a low-cost, high-end embedded 
microprocessor system:
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Interfacing a PS/2 port directly to an embedded microprocessor presents several challenges:

The host microprocessor does not have a PS/2 interface on-chip.

The PS/2 is a 5 V interface.

The PS/2 keyboard clocks out data at more than 10 kHz. The format is not compatible with SPI or 
I2C, so receiving this data stream either requires specialized hardware or an interrupt on each 
clock. This is either not achievable with most embedded operating systems, or an inefficient use 
of microprocessor bandwidth.

These three challenges are easily resolved by selecting a Stellaris microcontroller as an I/O 
processor.

A Stellaris LM3S101 microcontroller can perform all three functions for about $1.00 with resources to 
spare for future expansion. This example communicates to the host using a UART interface and a 
simple ASCII-based protocol. Replacing the microcontroller with an LM3S102 device would enable 
I2C communication to the host CPU.

Functional Description
The keyboard generates synchronous PS/2 clock and data signals to the LM3S101 microcontroller 
at 10-15 kHz. The LM3S101 microcontroller monitors these signals, clocks in the data stream, and 
verifies parity. The PS/2 interface is actually a bi-directional interface, but only keyboard transmit is 
demonstrated in this example.

Once a byte has been received and verified, the LM3S101 microcontroller software writes the data to 
the UART for transmission to the host microprocessor. The software could be expanded to convert 
the PS/2 scan codes to ASCII equivalents before they are relayed.

The entire I/O interface circuit is shown in Figure 2.

The software listing in the I/O Processor Example Source Code on page 8 uses the Stellaris family 
driver library, DriverLib. to simplify Stellaris peripheral accesses.

Protocol
This example uses a very simple one-byte ASCII protocol for commands from the host 
microcontroller:

0..7 control digital outputs 0..7

b and m control the beeper

Communication to the host microprocessor consists entirely of scan code data—in this case a series 
of codes known as Set 2. Each physical key in the keyboard generates unique byte sequences for 
make (key down) and break (key released). For example, the A key generates 0x1C for make, and 
0xF0 0x1C for break.
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Figure 2. I/O Interface Circuit

I/O Processor Example Source Code
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// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
//*****************************************************************************

#include "../../StellarisWare/hw_memmap.h"
#include "../../StellarisWare/hw_types.h"
#include "../../StellarisWare/hw_ints.h"
#include "../../StellarisWare/driverlib/sysctl.h"
#include "../../StellarisWare/driverlib/uart.h"
#include "../../StellarisWare/driverlib/gpio.h"
#include "../../StellarisWare/driverlib/timer.h"
#include "../../StellarisWare/driverlib/interrupt.h"

//*****************************************************************************
//
// States for PS/2 receive state-machine
//
//*****************************************************************************
enum
{
     PS2_STATE_IDLE,
     PS2_STATE_DATA,
     PS2_STATE_PARITY,
     PS2_STATE_STOP,
     PS2_STATE_DONE
};

//*****************************************************************************
//
// The value of PS/2 receive state-machine
//
//*****************************************************************************
volatile unsigned char g_ucPS2State;

//*****************************************************************************
//
// PS/2 receive data value
//
//*****************************************************************************
volatile unsigned long g_ulScanCode;
 
//*****************************************************************************
//
// PS/2 receive parity count value
//
//*****************************************************************************
unsigned char g_ucParity;

//*****************************************************************************
//
// PS/2 data bit count value
//
//*****************************************************************************
unsigned char g_ucDataBitCount;

//*****************************************************************************
//
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// Read and return the logic level of PS/2 Dat signal on PA5.
//
//*****************************************************************************
char 
Ps2DatIn(void)
{
    if(GPIOPinRead(GPIO_PORTA_BASE, 0x20) == 0x20)
    {
        return(1);
    }
    else
    {
        return(0);
    }
}

//*****************************************************************************
//
// The NVIC calls this ISR every time there's a falling edge on the PS/2
// clock input.
//
//*****************************************************************************
void 
PORTaISR(void)
{
    // 
    // Clear the interrupt
    //
    GPIOPinIntClear(GPIO_PORTA_BASE, 0x10);      

    //
    // Determine current receiver state
    //
    switch(g_ucPS2State)
    {
        case PS2_STATE_IDLE:
        {
            //
            // We were Idle, so check that the start bit is valid.
            // If it is then move to Data receive state
            //
            if(Ps2DatIn() == 0)
            {
                g_ucPS2State = PS2_STATE_DATA;
                g_ulScanCode = 0;
                g_ucParity = 0;
                g_ucDataBitCount = 0;
            }
            else
            {
                g_ucPS2State = PS2_STATE_IDLE;
            }
            break;
        }

        case PS2_STATE_DATA:
        {
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            //
            // Read in a data bit, LSB first, and
            // increment parity count if it is a '1'
            //
            g_ulScanCode >>= 1;
            if(Ps2DatIn()) 
            {
                g_ulScanCode |= 0x80;
                g_ucParity++;
            }
            if(++g_ucDataBitCount == 8)
            {
                g_ucPS2State = PS2_STATE_PARITY;
            }
            break;
        }

        case PS2_STATE_PARITY:
        {
            //
            // If theParity bit matches move to the Stop bit state
            //
            if((g_ucParity & 0x01) == Ps2DatIn())
            {
                g_ucPS2State = PS2_STATE_IDLE;    
            }     
            else
            {
                g_ucPS2State = PS2_STATE_STOP;                    
            }
            break;
        }

        case PS2_STATE_STOP:
        {
            //
            // If the stop bit is not a '1', then fail
            //
            if(Ps2DatIn()==0)
            {
                g_ucPS2State = PS2_STATE_IDLE;
            }    
            else
            {
                g_ucPS2State = PS2_STATE_DONE;
            }
            break;
        }
    }
}

//*****************************************************************************
//
// Main function for the I/O processor loop
//
//*****************************************************************************
int    
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main(void)  
{
    unsigned char ucLedState;
    int iCode;

    //
    // Enable the peripherals used by this application
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0);

    //
    // Set up GPIO B[6:1] as outputs
    // Don't use B7, it is for JTAG!!
    //
    GPIODirModeSet(GPIO_PORTB_BASE, 0x7e, GPIO_DIR_MODE_OUT);

    //
    // Set up GPIO A[3:2] as outputs, and A[5:4] as PS/2 port inputs
    //
    GPIODirModeSet(GPIO_PORTA_BASE, 0x0c, GPIO_DIR_MODE_OUT);
    GPIODirModeSet(GPIO_PORTA_BASE, 0x30, GPIO_DIR_MODE_IN);

    //
    // Set MCU clock to 20 MHz 
    //
    SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                   SYSCTL_XTAL_6MHZ);                      
    
    //
    // Setup UART for serial communications to host MCU (115,200 baud, 8-N-1)
    // 
    GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    UARTConfigSet(UART0_BASE, 115200, (UART_CONFIG_WLEN_8 |
                                      UART_CONFIG_STOP_ONE |
                                      UART_CONFIG_PAR_NONE));
    //
    // Configure Timer 0 for 50% PWM output at 600 Hz, ready to generate beep
    //
    TimerConfigure(TIMER0_BASE, TIMER_CFG_16_BIT_PAIR | TIMER_CFG_A_PWM);
    TimerLoadSet(TIMER0_BASE, TIMER_A, 0x8000);
    GPIODirModeSet(GPIO_PORTB_BASE, 0x01, GPIO_DIR_MODE_HW);
    TimerMatchSet(TIMER0_BASE, TIMER_A, 0x4000);

    //
    // Enable interrupts to the processor.
    //
    IntMasterEnable();

    //
    // Set up to interrupt on falling edge of PS/2 clock signal
    //
    IntPrioritySet(INT_GPIOA, 0x00);
    GPIOIntTypeSet(GPIO_PORTA_BASE, 0x10, GPIO_FALLING_EDGE);
    GPIOPinIntEnable(GPIO_PORTA_BASE, 0x10);
June 24, 2009 12



Application Note Using a Stellaris® Microcontroller as an I/O Processor
    IntEnable(INT_GPIOA);

    //
    // Start main processing loop
    //
    ucLedState=0;
    while (1)
    {
        //
        // Check for receive character from Host MCU
        //
        if(UARTCharsAvail(UART0_BASE))
        {
            iCode = UARTCharGet(UART0_BASE);

            //
            // If the received char is '0'..'7', toggle the corresponding LED
            //
            if((iCode >= '0') && (iCode <= '7'))            
            {
                ucLedState ^= (1 << (iCode - 0x30));
                GPIOPinWrite(GPIO_PORTB_BASE, 0x7e, ucLedState << 1);    
                GPIOPinWrite(GPIO_PORTA_BASE, 0x0c, ucLedState >> 4);
            }

            //
            // 'b' starts a beep. 'm' mutes it
            //
            if(iCode == 'b')
            {
                TimerEnable(TIMER0_BASE, TIMER_A);
            }
            if(iCode == 'm')
            {
                TimerDisable(TIMER0_BASE, TIMER_A);
            }
        }

        //
        // Check for scan code ready
        //
        if(g_ucPS2State == PS2_STATE_DONE)
        {
            UARTCharPut(UART0_BASE, g_ulScanCode);
            g_ucPS2State = PS2_STATE_IDLE;
        }
    }
    return(0);
}

Conclusion
A Stellaris microcontroller programmed as an I/O processor can solve difficult interfacing issues 
when working with high-end embedded microprocessors. A simple serial interface can support a rich 
set of I/O types, and preprocessing by the I/O microcontroller further reduces host microprocessor 
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overhead. With Stellaris, developers gain the advantage of a common tool chain, while providing an 
economical and effective system solution.
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