

AN3257 Application note

STEVAL-ISA080V1 90 W-HB LLC resonant converter based on the L6585DE combo IC

Introduction

This application note describes the performance of a 90 W, wide range mains, power factor corrected AC-DC power supply demonstration board.

The architecture is based on a two-stage approach: a front-end PFC pre-regulator and a downstream multi-resonant half bridge converter. Both stages are controlled by the new IC - L6585DE- which integrates PFC and half bridge control circuits and the relevant drivers. Although this new device is dedicated to managing electronic ballast, it's possible to use it also for a HB-LLC resonant converter.

The PFC section achieves current mode control operating in transition mode, offering a highly linear multiplier including a THD optimizer which allows for an extremely low THD, even over a large range of input voltages and loading conditions.

The HB controller offers the designer a very precise oscillator, a logic that manages all the operating steps and a full set of protection features dedicated to lighting applications but useful also for the resonant converter.

Figure 1. 90 W LCC resonant converter driven by L6585DE demonstration board

March 2011 Doc ID 17803 Rev 1 1/28

Contents AN3257

Contents

1	Basis of the HB-LLC resonant converter	. 5
2	Main characteristics	. 7
3	SMPS design	. 9
	3.1 L6585DE biasing circuitry (pin-by-pin)	. 9
	3.2 PFC power section design	12
	3.3 LLC resonant circuit design	14
4	Experimental results	15
5	Conducted emission pre-compliance test	21
6	BOM list	23
7	Revision history	27

AN3257 List of tables

List of tables

Table 1.	Electrical specifications	. 7
Table 2.	Board performance	15
Table 3.	Thermal results	15
Table 4.	Efficiency measurements @ Vin=115 Vac	16
Table 5.	Efficiency measurements @ Vin=230 Vac	16
Table 6.	No load consumption	18
Table 7.	BOM list	23
Table 8.	Document revision history	27

List of figures AN3257

List of figures

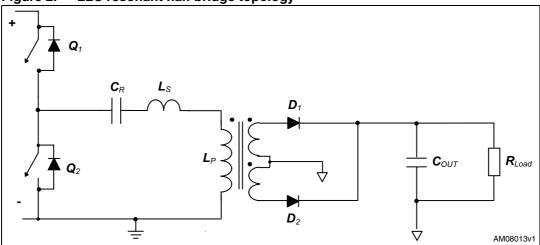
Figure 1.	90 W LCC resonant converter driven by L6585DE demonstration board	. 1
Figure 2.	LLC resonant half bridge topology	. 5
Figure 3.	Schematic	. 8
Figure 4.	Efficiency vs. input voltage	15
Figure 5.	Efficiency vs. Pout	17
Figure 6.	Resonant circuit primary side waveforms	17
Figure 7.	Resonant circuit secondary side waveforms	18
Figure 8.	Load transition 0 % ==> 100 %	19
Figure 9.	Load transition 100 % ==> 0 %	19
Figure 10.	Short-circuit during run mode	20
Figure 11.	Startup sequence@115 V - full load	20
Figure 12.	CE at 115 Vac 50 Hz - line 1 peak detector	21
Figure 13.	CE at 115 Vac 50 Hz - line 2 peak detector	21
Figure 14.	CE at 230 Vac 50 Hz - line 1 peak detector	22
Figure 15.	CE at 230 Vac 50 Hz - line 2 peak detector	22

1 Basis of the HB-LLC resonant converter

The LLC resonant half bridge belongs to the family of multi-resonant converters. Actually, as the resonant tank includes three reactive elements (Cr, Ls and Lp, shown in *Figure 2*), there are two resonant frequencies associated with this circuit. One is related to the condition of the secondary winding(s) conducting, where the inductance Lp disappears because it is dynamically shorted out by the low-pass filter and the load (there is a constant Vout voltage across it):

Equation 1

$$f_{R1} = \frac{1}{2\pi\sqrt{L_S \cdot C_R}}$$


The other resonant frequency is relevant to the condition of the secondary winding(s) open, where the tank circuit turns from LLC to LC because Ls and Lp can be unified in a single inductor:

Equation 2

$$f_{R2} = \frac{1}{2\pi\sqrt{\left(L_S + L_P\right) \cdot C_R}}$$

It is possible to show that for frequencies $f > f_{R1}$, the input impedance of the loaded resonant tank is inductive and that for frequencies $f < f_{R2}$, the input impedance is capacitive. In the frequency region $f_{R2} < f < f_{R1}$, the impedance can be either inductive or capacitive depending on the load resistance R_{out} . The LLC resonant converter is normally operated in the region where the input impedance of the resonant tank has an inductive nature, i.e. it increases with frequency. This implies that power flow can be controlled by changing the operating frequency of the converter in such a way that a reduced power demand from the load produces a frequency rise, while an increased power demand causes a frequency reduction.

Figure 2. LLC resonant half bridge topology

The most significant advantages of this topology are:

- Soft-switching of all semiconductor devices: ZVS (zero-voltage switching) at turn on for the MOSFETs and ZCS (zero-current switching) at both turn on and turn off for the secondary rectifiers. The first property results from the correct design of the resonant tank. The second one is a natural feature of the topology.
- Ability to accommodate an extremely broad load range, including zero load, with an
 acceptable frequency variation. Also this property results from the correct design of the
 resonant tank.
- Magnetic integration, which allows the combination of different magnetic devices into a single physical device.

As a result of all the above factors, high efficiency, high switching frequency capability, and high power density are typical characteristics of the converters based on this topology.

Operation at resonance is the preferred operating point, where load regulation is ideally zero, where tank current is maximally sinusoidal, and where peak tank current is minimized for a given power throughput.

AN3257 Main characteristics

2 Main characteristics

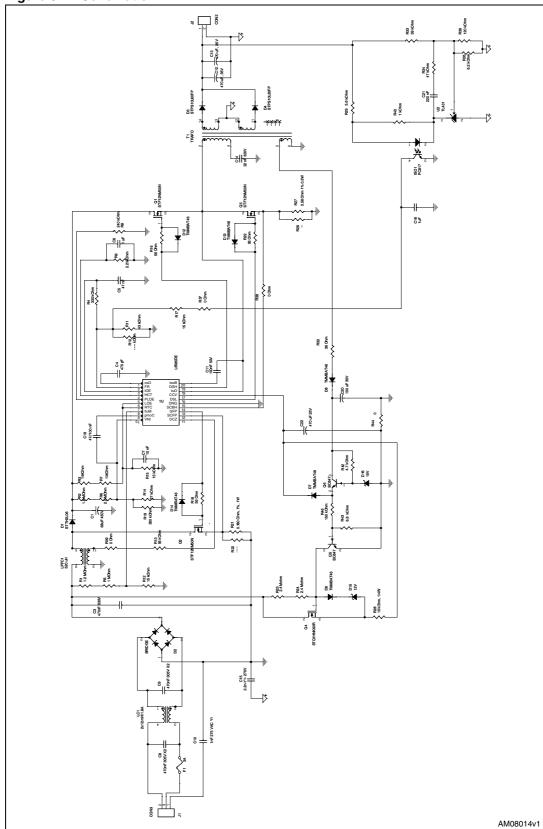

The SMPS electrical specifications are shown in *Table 1* and the schematic is presented in *Figure 3*.

Table 1. Electrical specifications

Input parameters						
V _{IN}	Input voltage range	90 to 265 V _{RMS}				
f _{line}	Line frequency	50/60 Hz				
Output parameters						
V _{OUT}	Output voltage	19 V				
I _{OUT}	Output current	4.7 A				

Main characteristics AN3257

Figure 3. Schematic

AN3257 SMPS design

3 SMPS design

The design of the major circuit parts is described in this section.

3.1 L6585DE biasing circuitry (pin-by-pin)

- Pin 1 OSC: is one of the two oscillator inputs. The value of the capacitor connected to ground defines the half bridge switching frequency in each operating state. C₄=470 pF value was chosen.
- Pin 2 RF: the component choice with oscillator capacitance defines the half bridge switching frequency in each operating state. A resistor R₁₁ connected to ground sets the run frequency that, for resonant converters, represents the minimum frequency. For a lamp ballast, during the preheating time (startup time) the switching frequency is set by the parallel of the above resistance with the one R₄ connected between pins RF and EOI; in this case (resonant converter design) it is true until the control loop take over by means and the optocoupler. Choosing the following frequencies:

Equation 3

$$f_{run} = f_{min} = 62.5 kHz$$
 $f_{pre} = f_{start-up} 70 kHz$ $t_{ign} = 46 ms$

it is possible calculate R₁₁ by following the formula:

Equation 4

$$e = 1 - \frac{1.33}{(C_4)^{0.581}} \qquad k = \frac{499.6 \cdot 10^3}{(C_4)^{0.872}} \qquad R_{11} = \left(\frac{k}{f_{run}}\right)^{1/e} = 43k\Omega$$

and so the R₄ value is:

Equation 5

$$R_{11}/\!/R_4 = \left(\frac{k}{f_{pre}}\right)^{1/e} \Rightarrow R_4 = 330k\Omega$$

• Pin 3 EOI: for lamp ballast applications, the net C₅-R₄ on the EOI pin is needed to set the frequency change from preheating mode to run mode. In the resonant converter this change, similar to the one between startup frequency and steady-state, is influenced at the start by the feedback response. However, the C₅-R₄ choice was made as it would be an electronic ballast; as R₄ value has already been calculated and t_{ign} at start fixed, C₅ value is calculated by the following formula:

Equation 6

$$C_5 = \frac{t_{ign}}{3 \cdot R_4} = 47nF$$

Pin 4 TCH: is the time counter and it is activated at startup as well as after a protection

 HBCS crossing during run mode - triggering. To achieve this, an R₉C₆ parallel network is connected between this pin and ground. Fixing a protection time t_{Tch.reduced}=0.27 sec (needed for overcurrent protection) it is possible to calculate C₆:

SMPS design AN3257

Equation 7

$$C_6 \cong t_{Tch,reduced} \cdot \frac{1}{0.26974 \cdot 10^6} = 1.03 \mu F \Rightarrow C_6 = 1 \mu F$$

Choosing t_{pre} =1.25 sec and considering the internal current generator I_{CH} =31 μ A, it's possible to calculate R_9 :

Equation 8

$$R_{9} = \frac{t_{pre} - \frac{C_{6}}{I_{CH}} \cdot 4.63}{C_{6} \cdot \ln \frac{4.63}{1.5}} = 2.24 \text{M}\Omega \Rightarrow 2.2 \text{M}\Omega$$

- Pin 5 EOLP: is a 2 V reference and allows programming of the window comparator of pin6 (EOL) according to table 5 of the L6585DE datasheet. Working in CTR tracking configuration and choosing a window voltage amplitude ± 240 mV, R₈=240 kΩ was inserted.
- Pin 6 EOL: is the input for the window comparator dedicated to lighting application protection (lamp end of life detection). For the HB-LLC resonant converter it was disabled; to do this, the EOL pin was directly connected to the CTR pin.
- Pin 7 CTR: this is a multifunction pin (PFC overvoltage, feedback disconnection, reference for EOL pin in case of tracking reading), connected to a resistive divider to the PFC output bus. Establishing the maximum PFC overvoltage PFC output overshoot (e.g. at startup) of $V_{OVPBUSpfc}$ =456 V and considering that the corresponding threshold on the CTR pin must be V_{thrCTR} =3.4 V it's possible to calculate R_3 + R_7 =2 $M\Omega$ and R_{15} =15 $k\Omega$.
- Pin 8 MULT: first, the maximum peak value for V_{MULT} , $V_{MULTmax}$, is selected. This value, which occurs at maximum mains voltage, should be 3 V (linearity limit) or nearly so in wide range mains and less in case of single mains. The PFC sense resistor selected is $R_S = R_{21} = 0.18 \ \Omega$ and it is described in the information relating to pin12. Considering the maximum slope of multiplier maxslope=0.75, the maximum peak value, occurring at maximum mains voltage is:

Equation 9

$$V_{\text{MULT max}} = \frac{I_{\text{Lpk}} \cdot R_{21}}{\text{max slope}} \cdot \frac{V_{\text{AC max}}}{V_{\text{AC min}}} = \frac{2 \cdot \sqrt{2} \cdot \frac{P_{\text{out}}}{\eta \cdot V_{\text{AC min}} \cdot PF} \cdot R_{21}}{\text{max slope}} \cdot \frac{V_{\text{AC max}}}{V_{\text{AC min}}} = 2.46$$

it's possible to calculate the multiplier divider ε :

Equation 10

10/28

$$\epsilon = \frac{R_{12}}{R_{12} + (R_5 + R_1)} = \frac{V_{MULT\,max}}{\sqrt{2} \cdot V_{AC\,max}} = \frac{2.46}{\sqrt{2} \cdot 265} = 6.58 \cdot 10^{-3}$$

Supposing 165 μ A is the current flowing into the divider, the lower resistor R₁₂ value can be calculated and so the upper resistance R₅ + R₁ value is:

AN3257 SMPS design

Equation 11

$$R_{12} = \frac{V_{MULT max}}{165 \mu A} = 15.2 k\Omega \Rightarrow R_{12} = 15 k\Omega$$

$$R_5 + R_1 = \frac{1 - \varepsilon}{\varepsilon} \cdot R_{12} = 2.264M\Omega \Rightarrow R_5 + R_1 = 2.2M\Omega$$

The voltage on the multiplier pin with the selected component values is recalculated at minimum line voltage, 0.86 V, and at maximum line voltage, 2.53 V. So the multiplier works correctly within its linear region.

Pin 9 COMP: is the output of the E/A and also one of the two inputs of the multiplier.
 The feedback compensation network, placed between this pin and INV (10), is just the C₁₉ network:

Equation 12

$$C_{19} = 147nF$$

• Pin 10 INV: to implement the voltage control loop, a resistive divider is connected between the regulated output voltage V_{BUSpfc} =400 V of the boost and the pin. The internal reference on the non inverting input of the E/A is 2.5 V, so R_6 and R_2 (*Figure 3*) is then selected (fixing R_{14} =27 k Ω , R_{19} =360 k Ω , $\Rightarrow R_{14}$ // R_{19} =25.11 k Ω), as follows:

Equation 13

$$\frac{R_6 + R_2}{R_{14} /\!/ R_{19}} = \frac{V_{BUSpfc}}{2.5} - 1$$
$$\Rightarrow R_6 + R_2 = 4M\Omega$$

• Pin 11 ZCD: is the input to the zero-current detector circuit. The ZCD pin is connected to the auxiliary winding of the boost inductor through a limiting resistor R₁₃. The ZCD circuit is negative-going edge triggered: when the voltage on the pin falls below 0.7 V the PWM latch is set and the MOSFET is turned on. To do so, however, the circuit must be first armed: prior to falling below 0.7 V the voltage on pin 11 must experience a positive-going edge exceeding 1.4 V (due to MOSFET's turn-off). The maximum main to-auxiliary winding turn ratio, m, has to ensure that the voltage delivered to the pin during MOSFET's OFF-time is sufficient to arm the ZCD circuit. Then:

Equation 14

$$m \le \frac{V_{BUSpfc} - \sqrt{2} \cdot V_{inRMS(max)}}{1.4} = 33.10$$

m=10 was chosen.

Considering the upper and lower clamp voltage of the ZCD pin, its minimum current sink current capability, according to the max and min voltage of the PFC bus, it was possible to calculate and to choose R_{13} =56 k Ω .

Pin 12 PFCS: is the inverting input of the current sense comparator. As the voltage
across the sense resistor (proportional to the instantaneous inductor current) crosses
the threshold set by the multiplier output, the power MOSFET is turned off. By following
the indication reported below, it's possible to determinate the PFC sense resistor:

SMPS design AN3257

Equation 15

$$I_{Lmax} = \frac{2 \cdot \sqrt{2} \cdot \frac{P_{outTOT}}{\eta}}{V_{ACmin} \cdot PF} = 3.48A$$

$$R_{21} < \frac{V_{CS\,min}}{I_{L\,max}} = 0.28\Omega$$

 R_{21} =180 m Ω with a power rating of 1 W was chosen.

- Pin 13 PFG: to correctly drive the external MOSFET, a resistor R18=56 Ω was used.
- Pin 14 HBCS: considering the tank peak current of the LLC resonant converter (calculated as described in "Designing LLC resonant converter for optimum efficiency" EPE2009, Barcelona, Spain, September2009, ISBN:9789075815009) I_{Rpk}=0.86 A and considering the HBCS threshold during the run phase V_{HBCS}=1 V, it is possible to calculate R₂₇ as:

Equation 16

$$R_{27} < \frac{V_{HBCS}}{I_{Rpk}} = \frac{1}{0.86} = 1.16\Omega$$

 R_{27} =0.56 Ω with a power rating of 1 W was chosen.

- Pin 15 GND: device ground
- Pin 16 LSD: to correctly drive the external half bridge low side MOSFET, resistor R_{22} =56 Ω was used. To reduce the MOSFET turn-off losses, a diode D_{13} =1N4148 was inserted, in parallel to R_{22} .
- Pin 17 Vcc: this pin is externally connected to the dynamic startup circuit (by means of R₂₃, R₂₄, Q₄, D₆, D₁₅, and R₂₈) and to the self supply circuit composed by the net (R₃₂, D₈, C₂₀, R₄₂, D₁₆, Q₆, D₇, C₂₂, R₄₆, R₄₃, and Q₅).
- Pin 18 out: high side driver floating reference. This pin is connected close to the source of the high side power MOSFET.
- Pin 19 HSD: to correctly drive the external half bridge low side MOSFET, a resistor R_{16} =56 Ω was used . To reduce the power MOSFET turn-off losses, a diode D_{12} =1N4148 was inserted, in parallel to R_{16} .
- Pin 20 boot: for the high side section C₁₁= 100 nF was selected.

3.2 PFC power section design

Input capacitor

The input high frequency filter capacitor must attenuate the switching noise due to the high frequency inductor current ripple. The worst conditions occur on the peak of the minimum rated input voltage V_{ACmin}=90 V. Establishing the following values:

- the coefficient of maximum high frequency voltage ripple r= 0.12
- total system efficiency η=0.9

It is possible, considering the minimum PFC switching frequency f_{minpfc} =36 kHz and the total output power P_{outTOT} =90 W, to determinate input capacitor C_3 in the following way:

AN3257 SMPS design

Equation 17

$$C_{3} = \frac{\frac{P_{outTOT}}{\eta \cdot V_{ACmin}}}{2 \cdot \pi \cdot f_{minpfc} \cdot V_{ACmin} \cdot r} = 457nF$$

C₃=470 nF was inserted.

Output capacitor

The output bulk capacitor C₁ selection depends on the DC output voltage, the admitted overvoltage, the output power, and the desired voltage ripple. Establishing the following values:

- PFC output voltage V_{busPFC}=400 V
- the coefficient of low frequency (twice the mains frequency f_{main} =50 Hz) voltage ripple r_1 =0.05

It is possible to calculate the bulk capacitor in the following way:

Equation 18

$$C_1 = \frac{\frac{P_{outTOT}}{V_{busPFC}}}{2\pi \cdot 2f_{main} \cdot V_{busPFC} \cdot r_1} = 17.9 \mu F$$

To have a smaller ripple and good reliability, the following commercial capacitor was chosen: $C1=68~\mu F$, 450~V.

Boost inductor

The inductance L_{pfc} is usually determined so that the minimum switching frequency f_{minpfc} is greater than the maximum frequency of the internal starter, to ensure a correct TM operation. Considering the minimum suggested value for PFC section f_{minpfc} =20 kHz, and that this last one can occur at the either the maximum V_{ACmax} =265 V or the minimum V_{ACmin} =90 V mains voltage, the inductor value is:

Equation 19

$$L_{pfc} = \frac{V_{AC}^2 \cdot \left(V_{busPFC} - \sqrt{2} \cdot V_{AC}\right)}{2 \cdot f_{minpfc} \cdot \frac{P_{out}}{n} \cdot V_{busPFC}}$$

To margin from f_{minpfc} , f_{pfc} =36 kHz was chosen. In this condition the lower value for the inductor is determined by V_{AC} = V_{ACmin} and results L_{pfc} =0.7 mH with, as explained in the PFCS pin description, a maximum current I_{Lmax} =3.48 A. (the inductor 1974.0002 was used, manufactured by MAGNETICA).

Power MOSFET

The choice of the MOSFET concerns mainly its $R_{DS(on)}$, which depends on the output power and its breakdown voltage; this last voltage is fixed just by the output voltage V_{buspfc} =400 V, plus the overvoltage ΔV_{OVPpfc} =60 V admitted and a safety margin.

The MOSFET's power dissipation depends on conduction and switching losses. Establishing a maximum total power loss, $P_{lossesAdm}=1 \% P_{out}=0.9 W$, it is easy to verify that

SMPS design AN3257

choosing MDmesh II power MOSFET STF12NM50N, the estimated total MOSFET power loss, in the worst case, is about $P_{lossesEst}$ =0.75 W so this choice was the definitive one. To dissipate the power losses in a better way, a heatsink was added.

Boost diode

The boost freewheeling diode is a fast recovery one. The breakdown voltage is fixed following a similar criterion as that for the MOSFET 1.2* ($V_{out} + \Delta V_{OVP}$). The value of its DC and RMS current, needed to choose the current rating of the diode, are:

Equation 20

$$I_{D1dc} = \frac{P_{outTOT}}{V_{BUSpfc}} = 0.225A$$

$$I_{D1rms} = 2\sqrt{2} \cdot I_{ACmax} \cdot \sqrt{\frac{4\sqrt{2}}{9\pi} \cdot \frac{V_{ACmin}}{V_{BUSpfc}}} = 0.62A$$

As the PFC works in transition mode, the Turbo 2 Ultrafast high voltage rectifier, STTH2L06, was selected.

3.3 LLC resonant circuit design

Using what is commonly known as the "first harmonic approximation" (FHA) technique, the LLC resonant circuit was designed. Considering the following converter specifications:

Nominal input DC voltage: 400 V

Output Voltage: 19 V @ 4.7 A

Resonance frequency: 90 kHz

Minimum operating frequency: 60 kHz

Maximum operating frequency: 230 kHz

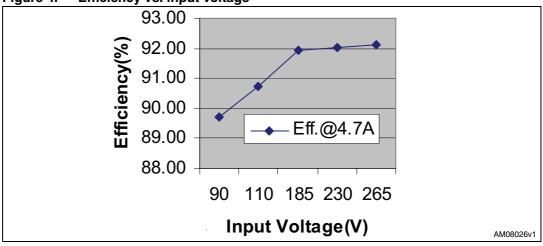
Delay time (L6585DE datasheet): 1.2 μs

Foreseen capacitance at half bridge node: 120 pF.

It was possible, by means of the AN2450 application note, to calculate the resonant power transformer and the resonant capacitor specification. The transformer 1860.0045 was used, manufactured by MAGNETICA:

- L_p=1200 μH
- L_r=200 μH

and the resonant capacitor C_r=22 nF.


4 Experimental results

The schematic of the tested board is shown in *Figure 3*. First of all, the board was tried in terms of efficiency, power factor, total harmonic distortion, and thermal behavior for the input voltage range at nominal load; below, in *Table 2* and *Table 3*., the results obtained for a 60 min test are shown.

Table 2. Board performance

Vin (V)	lout (A)	Vout (V)	Pout (W)	Pin (W)	Efficiency (%)	THD (%)	PF
90	4.7	18.86	88.64	98.8	89.72	2.3	0.999
110	4.7	18.86	88.64	97.7	90.73	2.2	0.999
185	4.7	18.86	88.64	96.4	91.95	3.4	0.994
230	4.7	18.86	88.64	96.3	92.05	5.5	0.987
265	4.7	18.86	88.64	96.2	92.14	7.8	0.977

Figure 4. Efficiency vs. input voltage

The high efficiency of the PFC, working in transition mode, and the very high efficiency of the resonant stage, working in ZVS, provides, on average, an efficiency better than 91 %. For low input mains voltage the efficiency is just a little lower because PFC conduction losses increase.

Table 3. Thermal results

V _{IN} (V)	Ambient temp (°C)	MOS _{PFC} (°C)	DIODE _{PFC} (°C)	L _{PFC} (°C)	MOS _{HB} (°C)	L _{Resonant} (°C)	DIODE _{output} (°C)	L6585DE (°C)
90	25	59	65	53	37	61	72	44
110	25	53	62	50	37	60.5	70	44
185	25	44.5	55	41	40	57	70	44

Experimental results AN3257

Table 3. Thermal results (continued)

V _{IN} (V)	Ambient temp (°C)	MOS _{PFC} (°C)	DIODE _{PFC} (°C)	L _{PFC} (°C)	MOS _{HB} (°C)	L _{Resonant} (°C)	DIODE _{output} (°C)	L6585DE (°C)
230	25	40.2	52	39.8	39.7	57	70	44
265	25	40.2	50	37.8	39.7	57	70	44

Table 4 and *5* show the output voltage and efficiency measurement at nominal mains with different load conditions powering the board at the two nominal input mains voltages.

Table 4. Efficiency measurements @ Vin=115 Vac

V _{in} (V)	V _{out} (V)	I _{out} (A)	P _{out} (W)	P _{in} (W)	Efficiency(%)
115	18.86	4.7	88.60	97.4	90.96
115	18.88	3.7	69.82	76.5	91.27
115	18.92	2.7	51.06	56	91.17
115	18.95	1.7	32.22	35.8	89.99
115	18.98	1	18.98	21.7	87.47
115	18.99	0.5	9.50	11.7	81.15
115	19	0.25	4.75	6.7	70.90

Table 5. Efficiency measurements @ Vin=230 Vac

V _{in} (V)	V _{out} (V)	I _{out} (A)	P _{out} (W)	P _{in} (W)	Efficiency(%)
230	18.86	4.7	88.64	96.3	92.05
230	18.88	3.7	69.86	76	91.92
230	18.92	2.7	51.08	56	91.22
230	18.95	1.7	32.22	36.1	89.24
230	18.98	1	18.98	22	86.27
230	18.99	0.5	9.50	11.7	81.15
230	19	0.25	4.75	6.3	75.40

95.00 90.00 Efficiency(%) 85.00 80.00 75.00 Eff.@115Vac 70.00 Eff.@230Vac 65.00 60.00 4.7 3.7 2.7 1.7 1 0.5 0.25 Iout(A) AM08015v1

Figure 5. Efficiency vs. Pout

At lower loads the efficiency decreases because HB works at high frequency so the switching losses increase.

Resonant stage operating waveforms

In *Figure 6* some waveforms are shown (HB middle point voltage, primary winding current, and oscillator voltage) during steady-state operation of the circuit at full load.

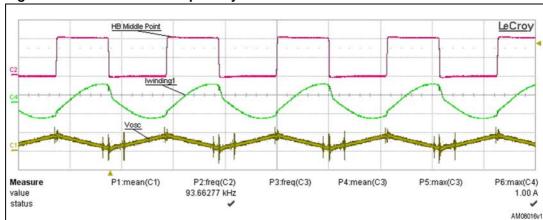


Figure 6. Resonant circuit primary side waveforms

The transformer primary current wave is almost sinusoidal because the operating frequency is slightly above the resonance one. In this condition, the circuit has a good margin for ZVS operations, providing good efficiency, and the almost sinusoidal wave shape provides for an extremely low EMI generation.

In *Figure 7* some waveforms relevant to the secondary side (output voltage ripple, current of one output diode, and output diode voltage) are shown.

Experimental results AN3257

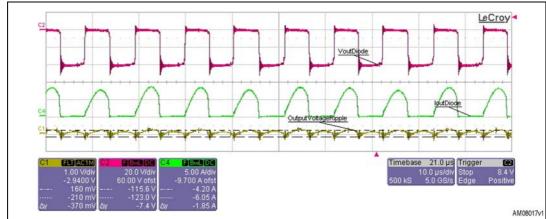


Figure 7. Resonant circuit secondary side waveforms

The current in the diode is almost a sine wave and its average value is half of the output current while the rectifiers reverse voltage is, according to theoretical value, $2V_{OUT}+V_{F}$ The high frequency ripple of the output voltage is only 180 mV (0.93 %).

No load power consumption and Load transition

In *Table 6* the power consumption in no load condition is given, while *Figure 8* shows the waveforms of the output voltage and the current during a load variation from 0 % to 100 %; the circuit response is fast enough to avoid output voltage dips. In *Figure 9*, the opposite load transition is checked (100 % to 0 %). Also in this case the transition doesn't show any problems for the output voltage regulation.

Table 6. No load consumption

V _{in} (V)	I _{out} (A)	V _{out} (V)	P _{out} (W)	P _{in} (W)
90	0	19.01	0	1.3
110	0	19.01	0	1.2
185	0	19.01	0	1.1
230	0	19.01	0	1.1
265	0	19.01	0	1.1

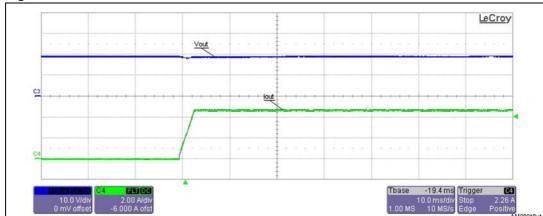
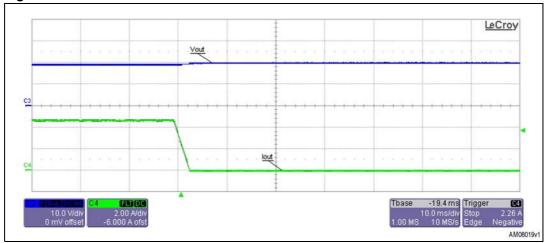



Figure 8. Load transition 0 % ==> 100 %

Figure 9. Load transition 100 % \Longrightarrow 0 %

Short-circuit protections and startup sequence

The L6585DE is equipped with, in the HB section, a current sensing input (pin14, HBCS) and a dedicated overcurrent management system. The current flowing in the circuit is detected and the signal is fed into the HBCS pin. It is internally connected to the input of the first comparator referenced to 1.6 V and to that of a second comparator referenced to 2.75 V. When one of the two comparators is activated, the IC is latched in low consumption mode.

In *Figure 10* the response system in short-circuit condition during run mode is shown; as soon as HBCS=1.6 V the IC is stopped.

Experimental results AN3257

Figure 10. Short-circuit during run mode

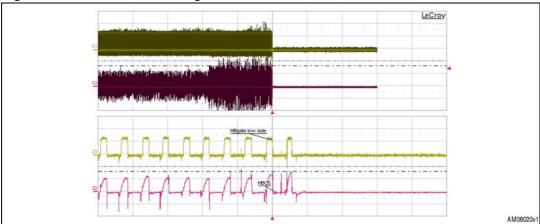
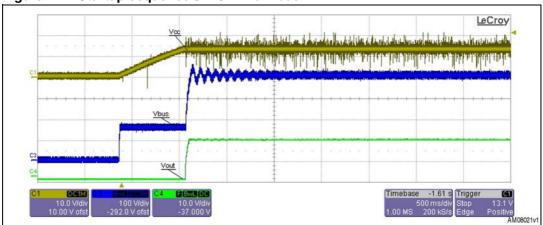
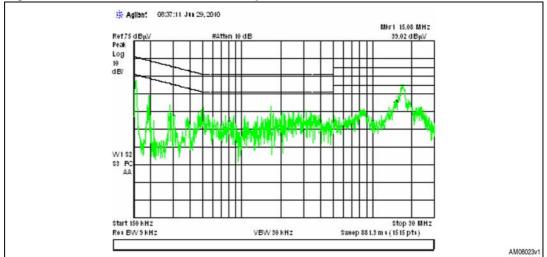



Figure 11 shows the waveforms during startup at 115 Vac and full load.

Figure 11. Startup sequence@115 V - full load



5 Conducted emission pre-compliance test

The limits indicated on both diagrams at 115 Vac and 230 Vac comply with EN55022 Class-B specifications. The values are measured in peak detection mode.

Figure 12. CE at 115 Vac 50 Hz - line 1 peak detector

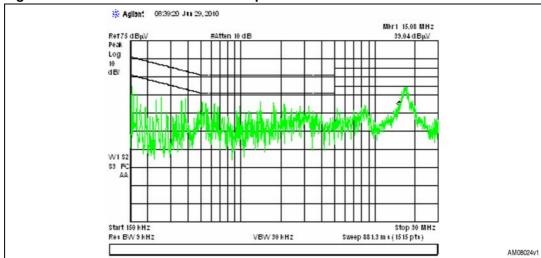
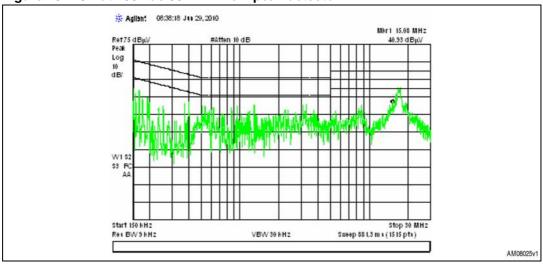



Figure 14. CE at 230 Vac 50 Hz - line 1 peak detector

22/28 Doc ID 17803 Rev 1

6 BOM list

Table 7. BOM list

Reference	Part / value	Technology information	Package	Manufacturer code
C1	68 μF 450 V	Electrolytic aluminium capacitor	TH Radial	EPCOS B43890A5686M000
C3	470 nF 630 Vdc	Metallized polypropylene film capacitor	TH Radial	EPCOS B32653A6474K000
C4	470 pF, 25 V	Ceramic capacitor COG, 5 %	SMD 0805	
C5	47 nF, 25 V	Ceramic capacitor	SMD 0805	
C6	1 μF, 25 V	Ceramic capacitor	SMD 0805	
C7	10 nF, 25 V	Ceramic capacitor	SMD 0805	
C8,C9	305 V X2, 470 nF, 10 %	Polypropylene	TH Radial	EPCOS B32922C3474K000
C10	1 nF 250 V Y1	Ceramic capacitor	TH Radial	
C11	100 nF 50 V	Ceramic capacitor	SMD 1206	
C12	470 μF, 35 V	Electrolytic aluminium capacitor	TH Radial	
C13	470 μF, 35 V	Electrolytic aluminium capacitor	TH Radial	
C14	22 nF 630 V	Polypropylene	TH Radial	
C15	2.2n-Y1- 250 V	Ceramic capacitor	TH Radial	
C16	1 μF, 25 V	Ceramic capacitor	SMD 0805	
C19	150 nF, 25 V	ceramic capacitor	SMD 0805	
C20	100 μF 35 V	Electrolytic aluminium capacitor	TH Radial	
C21	220 nF, 25 V	ceramic capacitor	SMD 0805	

167
•

Table 7. BOM list

Reference	Part / value	Technology information	Package	Manufacturer code	
C22	470 μF 25 V	Electrolytic aluminium capacitor	TH radial		
D1	600 V, 3 A	Turbo 2 ultrafast high voltage rectifier	DO41	STMicroelectronics STTH2L06	
D2+heatsink	800 V, 4 A	Bridge	TH	GBU8K	
D3,D4 +heatsink	10 A, 60 V	Power schottky rectifier	TO-220	STMicroelectronics STPS10L60FP	
D6,D7,D8, D12, D13,D14	150 mA, 100 V	Schottky rectifier	Minimelf	STMicroelectronics TMMBAT46	
D15	12 V	Zener diode	Minimelf		
D16	15 V	Zener diode	Minimelf		
F1	3 A	Fuse	TH		
ISO1	PC817	Photo Coup	TH		
J1	CON3	Terminal pin distance 7.62 mm	ТН		
J2	CON2	Terminal pin distance 5 mm	TH		
LC1	2x12 mH/1.8 A	Common choke	TH	TDK HF2826-123Y1R8-T01	
LPFC1	520 μH,1.4 A	PFC inductor	TH	Magnetica 1974.002	
Q1,Q2,Q3+ heatsink	STF12NM50N	MDMESH™ II MOSFET	TO220-FP	STMicroelectronics STF12NM50N	
Q4	STQ1HNK60R	SuperMESH™ MOSFET	TH	STMicroelectronics STQ1HNK60R	
Q5,Q6	BC847	Small signal bipolar	SMD SOT 23		
R1	1.2 MΩ, 1 %, 1/4 W		SMD 1206		

BOM list

Tab	7 ما	, I	BO	М	liet
ıav	IC /		ou	IVI I	ПЭL

Reference	Part / value	Technology information	Package	Manufacturer code
R2	1.8 MΩ, 1 %, 1/4 W		SMD 1206	
R3,R5,R7	1 MΩ, 1 %, 1/4 W		SMD1206	
R4	330 kΩ, 1 %, 1/8 W		SMD 0805	
R6	2.2 MΩ, 1 %, 1/4 W		SMD1206	
R9	2.2 MΩ, 1 %, 1/8 W		SMD 0805	
R8	240 kΩ, 1 %, 1/8 W		SMD 0805	
R10	Not mounted		SMD 0805	
R11	43 kΩ,1 %, 1/4 W		SMD 0805	
R12,R15	15 kΩ, 1 %, 1/8 W		SMD 0805	
R17	15 kΩ, 1 %, 1/4 W		SMD 1206	
R13	56 kΩ, 1 %, 1/4 W		SMD 1206	
R14	27 kΩ, 1 %, 1/4 W		SMD 1206	
R16,R18,R22	56 Ω, 1 %, 1/4 W		SMD 1206	
R19	360 kΩ, 1 %, 1/4 W		SMD 1206	
R20	Not mounted		TH, 1 W	
R21	0.180 Ω, 1 %, 1 W		TH radial	
R23,R24	2.4 MΩ, 1 %, 1/4 W		SMD 1206	
R26	Not mounted		TH, 1 W	
R27	0.56 Ω, 1 %, 1 W		TH Radial	
R28	10 kΩ, 5 %,1/4 W		SMD 1206	
R29	5.6 kΩ, 1 %, 1/8 W		SMD 0805	
R32	36 Ω,1 %, 1 W		SMD 1206	
R33	39 kΩ, 1 %,1/8 W		SMD 0805	
R34	47 kΩ, 1 %, 1/8 W		SMD 0805	
R35	6.2 kΩ, 1 %, 1/8 W		SMD 0805	

Table 7. BOM list

Reference	Part / value	Technology information	Package	Manufacturer code
R36	120 kΩ, 1 %, 1/8 W		SMD 0805	
R37,R38,R39, R44	0 Ω, 1/4 W, 5 %		SMD 1206	
R40	1 kΩ, 1 %, 1/8 W		SMD 0805	
R42	4.7 kΩ, 1 %, 1/8 W		SMD 0805	
R43	6.8 kΩ, 1 %, 1/8 W		SMD 0805	
R46	150 kΩ, 1 %, 1/8 W		SMD 0805	
T1	TRAFO		тн	MAGNETICA 1860.0045
U1	L6585DE		SMD SO20	STMicroelectronics L6585DE
U2	TL431		TH TO92	STMicroelectronics TL431

AN3257 Revision history

7 Revision history

Table 8. Document revision history

Date	Revision	Changes
31-Mar-2011	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

28/28 Doc ID 17803 Rev 1

