
Introduction

The HCMS-29xx/HCMS-39xx 5x7 alphanumeric displays
are high performance, easy to use, x- and y-stackable dot
matrix displays driven by on-board, low power CMOS
ICs. These displays have a serial IC interface that allows
for higher character count information while requiring
a minimum number of data lines. This family of displays
comes in 4-, 8-, and 16-character packages. Each display
can be directly interfaced with a microprocessor or mi-
crocontroller, thus eliminating the need for cumbersome
interface components.

This application brief is a description of interfacing two
serially cascaded HCMS-2912 displays with an INTEL
8751H microcontroller. This brief is to be used as a supple-
ment to the data sheet on High Performance CMOS 5x7
Alphanumeric Displays. Figures 1 and 2 show the circuit
diagram and assembly source code that were implement-
ed and will be the subject of this discussion. An instruction
set description for the 8751H shown in Figure 3 has been
included to assist in the understanding of the software
used in this application. Note that any one of the HCMS-
29xx/HCMS-39xx displays can be driven by this controller
with a few minor modifications in hardware and software
configurations. The approach taken here will be to view
the hardware configuration, and then step through the
software that operates the circuit. By taking this approach,
many important considerations that need to be made
when doing this sort of application will be identified.

Hardware
8751H

The circuit shown in Figure 1 shows the microcontroller
and the two displays interfaced through Port 1 (P1.X) of
the controller. The port is bit addressable, thus allowing
for the manipulation of an individual pin voltage level
while allowing the other pins to remain at their same
values. This is a convenient characteristic when it is
desired to serially write in bits of character data to the
display’s registers and not effect the reset or chip enable
values. This characteristic makes writing code much
simpler compared to a controller that can only address
an external device in a byte format. During the power up,
the port pins will be in a random state until the oscillator
has started and the internal reset algorithm has written
ones to them. The oscillator start up time will depend on
the oscillator frequency. A 10 MHz crystal has about a 1
ms start up time, whereas that of a 1 MHz crystal is about
10 ms. A 6.0 MHz crystal oscillator along with two capaci-
tors, C1 = C2 = 20 pF, were used here. An external oscil-
lator input to XTAL2 with XTAL1 and V

SS
 grounded can be

used instead of the crystal configuration shown here.
The power up reset values of R = 8.2 kΩ and C3 = 10 µF
were chosen to ensure a valid reset which is accomplished
by holding the RST pin high for at least two machine cycles
(24 oscillator periods) while the oscillator is running. A de-
coupling capacitor of 0.5 µF, not shown here, was used
between the power supply and ground to eliminate any
high frequency noise from interfering with the controller’s
internal circuitry.

HCMS-29xx and HCMS-39xx
Interfacing the Avago Technologies HCMS-29xx / HCMS-39xx
LED Alphanumeric Displays with the Intel 8751H Microcontroller

Application Brief D-002

2

Figure 1. Circuit Diagram of two HCMS-2912 Displays interfaced with the Intel 8751H.

HCMS-29xx/HCMS-39xx

The display connections to the controller port are bit
addressable as previously mentioned above. BLANK is
grounded and therefore not used here. However, the
BLANK may be modulated as a way to control brightness.
Setting the SEL high for the display that is to first be illumi-
nated (for two or more displays in cascade), will have that
display’s refresh circuitry driven by its internal oscillator,
and its OSC pin will output the internal oscillator’s signal
to be used to synchronize its refresh circuitries with the
refresh circuitries of any other display. Setting the other
display’s SEL low will allow it to receive through its OSC
pin the master display’s oscillator signal.

When concerning the power supplied to the display
and maintaining the voltage levels as specified by the
data sheet, V

LED
 and V

LOGIC
 should be connected to power

supplies that are independent of each other. This is done
to isolate V

LOGIC
 from variations in V

LED
 due to the variation

in the LED currents required to light the display. The V
LED

power supply should be able to handle large current

surges. The peak current surge value can be calculated
with Equation 3 as shown on page 14 in the data sheet.
Using a decoupling capacitor between the power supply
and ground will help prevent any supply noise in the
frequency range greater than that of the functioning
display from interfering with the display’s internal circuitry.
The value of the capacitor depends on the series resistance
from the ground back to the power supply and the range
of frequencies that need to be suppressed. It is also advan-
tageous to use the largest ground plane possible. A large
ground plane will reduce the ground path resistance (re-
luctance) and thus reduce any undesirable voltage drops
(magnetomotive forces) which can act as noise sources
along the ground to supply path. Here, V

LED
 and V

LOGIC
 were

connected to the same power supply and decoupling
capacitor of 0.5 µF as the 8751H. Please refer to the data
sheet for a description on thermal, electrical, and elecro-
static discharge considerations concerning the display.

EA/VP

U1
8751

X1

X2

RESET

P 1.5
P 1.6
P 1.7

DATA OUT

31

+5 V

19

18

9

6
7
8

P 1.45 P 1.34 P 1.23 P 1.12 P 1.01
CE
OSC
CLOCK

18
25

17

RESET24 SEL21 BLANK19 RS15 DATA IN14

INT 113 INT 012

26 DATA OUT

CE
OSC
CLOCK

18
25

17

RESET24 SEL21 BLANK19 RS15 DATA IN14

26

3 10 223 10 22
V LED

V LED

V LOGIC

V LED

V LED

V LOGIC
HCMS-2912

DSP 2
HCMS-2912

DSP 1

GND LED

7

GND LOGIC

20

GND LED

7

GND LOGIC

20

C2
CAP

Y1
XTAL

C1
CAP

C3
CAP

+5 V

R1
RESISTOR

3

Software

The source code was written to
command two cascaded HCMS-2912
(8-character) displays to have the
character series “Avago Technologies”
strobe from the display’s left to right
(observer’s right to left) one character
at a time. The output of the right
display feeds serially into the input of
the left display. When both displays
are fully illuminated with the entire
character string, the display is then
reset and the routine is repeated.
Please briefly review the Electrical
Description in the data sheet and the
controller’s instruction set shown in
Figure 3 to allow for a better under-
standing of the source code that is
to be presented here. Make a special
note that all the registers are 8-bit
bytes except for the program counter
and data pointer which are 16-bit
words.

Notice at the beginning of the code
that the port equates are preceded
by semicolons and are thus just con-
sidered as remark statements. It is
important to know that the 8751H
controller’s output port has all 1s after
its power up reset. This lets the pro-
grammer know what the initial pin
states are on the controller/display
interconnection. The .opdef state-
ments are inherent of the PseudoCorp
assembler that was used in this appli-
cation and may not be available with
another assembler package.

Figure 2. Assembly Source Code Used to Program the 8751H.

(continues)

;***
;FILENAME: SAXON.ASM
;THIS PROGRAM INTERFACES AN INTEL 8751 8-BIT EMBEDDED CONTROLLER
;TO TWO HCMS-2912 SMART ALPHANUMERIC LED DISPLAYS
;
;NOTE: THE OUTPUT PORT (P1) AFTER CONTROLLER POWER UP IS #FFH
;
;PORT PIN ASSIGNMENTS
;
;P1.0	 EQU	 DATA LINE
;P1.1	 EQU	 REGISTER SELECT
;P1.2	 EQU	 CHIP ENABLE
;P1.3	 EQU	 CLOCK
;P1.4	 EQU	 RESET
;***

	 .opdef	 EQU,.cequ	 ;EQUATING ASSEMBLER IDENTIFIERS
	 .opdef	 DB,.db	 ;WITH USER SELECTED IDENTIFIERS
	 .opdef	 CALL,acall
	 .opdef	 ORG,.org
	 .opdef	 END,lend

CHRTBL	 EQU	 0400H	 ;CHARACTER LOOKUP TABLE BASE ADDRESS

;***
;MAIN PROGRAM
;SENDING A SERIES OF CHARACTERS TO THE SAXON
;***

	 ORG	 0000H
	
	 CALL	 DELAY
	 CALL	 DELAY
	 CALL	 DELAY
	 CLR	 P1.4	 ;SET RST LOW TO BLANK LEDS
	 SETB	 P1.4	 ;SET RST HIGH (CWO/SLEEP,DOT/RANDOM)

	 CALL	 CLRSAX	 ;CLEAR SAXON DISPLAY

	 CALL	 CONTSX	 ;CONTROL SUBROUTINE

AGAIN:	 CALL	 CHAR	 ;FETCH CHARACTERS

	 CALL	 DELAY

	 AJMP	 AGAIN

;***
;SUBROUTINE DELAY
;***

DELAY:	 MOV	 R3,#OFFH	 ;255 TIMES
TIME:	 MOV	 R1,#OFFH	 ;255 = 510 CYCLES
STALL1:	 DJNZ	 R1,STALL1
	 MOV	 R1,#OFFH	 ;255 NEW
STALL2:	 DJNZ	 R1,STALL2
	 MOV	 R1,#OFFH	 ;255
STALL3:	 DJNZ	 R1,STALL3
	 DJNZ	 R3,TIME
	 RET		 ;RETURN TO MAIN PROGRAM

;***
;SUBROUTINE CLRSAX
;CLEARS THE SAXON BY ENTERING A ZERO FOR EACH DISPLAY PANEL
;***

CLRSAX;	 CLR	 P1.1	 ;SELECT DOT REGISTER
	 CLR	 P1.2	 ;SET CE LOW TO ENTER DATA

	 CLR	 P1.0	 ;SET DATA LINE TO ZERO

	 MOV	 R4,#04H

4

Main program

The main program has its origin at
zero indicating that the next line
of code will be the first command
performed by the controller after its
power up reset. The code’s delays are
installed here to make sure that the
display’s ICs have plenty of time to
charge up to the proper initial voltage
levels before the controller sends the
display reset command. The length of
this initial delay can vary if different
values of the external power up reset
circuitry or different oscillator speeds
are used. Using a larger external RC
time constant or a slower oscilla-
tor speed would call for less initial
delay time. The display is first reset
and cleared, then Control Words are
addressed for simultaneous mode
and brightness, and then the charac-
ters are fetched one at a time.

Delay

The delay is just three consecu-
tive loops nested inside of another
loop. Note that the magnitude of the
delay depends on the programmer’s
desires. To calculate the time length
of the delay, add up how many cycles
are required by the delay and multiply
that number by twelve controller os-
cillator periods (for the 8751H, one
machine cycle takes twelve oscillator
periods). Here the oscillator period
using a 4.6 MHz crystal is 1/4.6 MHz =
0.22 µs. The delay requires 255•3•510
+ 510 = 390660 cycles. Thus the delay
is 390660•12•0.22 = 1.03 second long.

FOUR:	 MOV	 R6,#0A0H	 ;SET COUNT FOR 4(160)D
ALOOP:	 SETB	 P1.3	 ;SET CLK HIGH TO RECEIVE DATA BIT
	 CLR	 P1.3	 ;SET CLK LOW
	 DJNZ	 R6,ALOOP	 ;640 (40 X 16) BITS LOOP
	 DJNZ	 R4,FOUR

	 SETB	 P1.2	 ;SET CE HIGH TO END DATA ENTER
	 CALL	 DELAY

	 RET		 ;RETURN TO MAIN PROGRAM

;***
;SUBROUTINE CONTSX
;CONTROLS SLEEP, BRIGHTNESS, PRESCALER, & SERIAL/PARALLEL MODE
;***

CONTSX:	 SETB	 P1.1	 ;SET RS HIGH TO SELECT CONTROL REG
	 MOV	 R5,#02H	 ;MASTER FIRST, THEN SLAVE
	 MOV	 R6,#02H	 ;CONT WORD 1 FIRST, THEN CONT WORD 0
CASCD:	 MOV	 A,#81H	 ;CONTROL WORD 1 / SIMULTANEOUS
	 SJMP	 CW01	 ;JUMP TO CONTROL WORD 1
CW00:	 MOV	 A,#4DH	 ;CONTROL WORD 0,BRIGHTNESS=44%,AWAKE

CW01	 CLR	 P1.2	 ;SET CE LOW TO ENTER DATA
	 MOV	 R7,#08H	 ;LOAD ROW BIT COUNT
BLOOP:	 RLC	 A	 ;ROTATE MSB TO CARRY, CARRY TO LSB
	 MOV	 P1.0,C	 ;MOVE CARRY TO DATA LINE
	 SETB	 P1.3	 ;SET CLK HIGH TO RECEIVE DATA BIT
	 CLR	 P1.3	 ;SET CLK LOW
	 DJNZ	 R7,BLOOP	 ;TEST FOR ANOTHER BIT IN COLUMN

	 SETB	 P1.2	 ;SET CE HIGH TO END DATA ENTER

	 DJNZ	 R5,CASCD	 ;IC CASCADING LOOP
	 DJNZ	 R6,CWO0	 ;CONTROL WORD LOOP

	 RET		 ;RETURN TO MAIN PROGRAM

;***
;SUBROUTINE CHAR
;CALLS UPON CHARACTERS WITHIN THE CHARACTER TABLE
;***

CHAR:	 CLR	 P1.1	 ;SELECT DOT REGISTER
	 MOV	 R0,#11H	 ;17 CHARACTERS
	 MOV	 R2,#00H	 ;SET INITIAL CHARACTER COUNT VALUE
CHLOOP:	 MOV	 A,R2	 ;CHARACTER LOOKUP LOOP
	 INC	 R2	 ;NEXT CHARACTER
	 MOV	 DPTR,#CHRTBL	 ;POINT AT CHARACTER DATA BASE
	 MOV	 B,#05H	 ;5 BYTES PER CHARACTER
	 MUL	 AB	 ;COMPUTE OFFSET WITHIN TABLE
	 ADD	 A,DPL	 ;ADD DPL TO LOWER BYTE OFFSET: C=0/1
	 MOV	 DPL,A	 ;MOVE LOWER BYTE OF ADDRESS INTO DPL
	 MOV	 A,B	 ;MOVE UPPER BYTE OF OFFSET INTO ACC
	 ADDC	 A,DPH	 ;ADD DPH TO UPPER BYTE OFFSET WITH C
	 MOV	 DPH,A	 ;MOVE UPPER BYTE ADDRESS INTO DPH

	 CLR	 P1.2	 ;SET CE LOW TO WRITE DATA

	 MOV	 R7,#05H	 ;5 COLUMNS PER CHARACTER
NXTCOL:	 MOV	 A,#00H	 ;CLEAR ACC
	 MOVC	 A,@A+DPTR	 ;MOV COLUMN DATA TO A
	 INC	 DPTR	 ;SET DPTR TO NEXT COLUMN
	 MOV	 R5,#08H	 ;8 ROWS PER COLUMN

(continues)

Figure 2. Assembly Source Code Used to Program the 8751H. (continued)

5

Clearing the Display

The display should be cleared before
it is awakened with the proper
control word and immediately after a
reset command. When the display is
reset, the Control Words are cleared
thus putting the display into sleep
mode. However, the Dot Register
that contains the LED on/off infor-
mation is randomized after a reset.
Clearing the display after a reset and
before being awakened will keep a
random character pattern from being
displayed. Here, 640 zeros are written
into the overall 16-character display.
Even though row eight doesn’t have
LEDs, it still counts as a bit position
when entering data.

Control Words

Note that the register select has
been switched to a high state to
switch from the Dot Register to the
Control Register. When using an 8- or
16-character display, or more than
one display in cascade, the serial/
simultaneous mode decided by bit
D0 of Control Word 1 (CW1) must be
addressed. Refer to Table 2 in the data
sheet for a Control Register descrip-
tion. There is one IC for every four
characters in a display network. In the
8-character display, there are two ICs
and the 16-character display has four
ICs. The display’s four left-most charac-
ters (four right-most characters to the
observer) are controlled by the first IC
that receives data through the D

IN
 pin,

and the next IC’s D
IN

 is connected to
the first IC’s D

OUT
. Multiple displays are

serially cascaded by connecting D
IN

to D

OUT
 pins in a fashion as described

above. The Control Registers of the ICs
are independent of each other. This
means that to simultaneously adjust
the IC’s brightness, the same Control
Word must be entered into both ICs,
unless the Control Registers are set to
simultaneous mode.

In this application, the first two ICs
are in the first display and the third
and fourth ICs are in the second
display. In the code, the master (first)

NXTROW:	 RLC	 A	 ;ROTATE MSB TO CARRY, CARRY TO LSB
	 MOV	 P1.0,C	 ;MOVE CARRY TO DATA LINE
	 SETB	 P1.3	 ;SET CLK HIGH TO RECEIVE DATA BIT
	 CLR	 P1.3	 ;SET CLK LOW
	 DJNZ	 R5,NXTROW	 ;ROW LOOP
	 DJNZ	 R7,NXTCOL	 ;COLUMN LOOP

	 SETB	 P1.2	 ;SET CE HIGH TO END DATA ENTER

	 CALL	 DELAY

	 DJNZ	 R0,CHLOOP	 ;DEC NUMBER OF CHARACTERS LEFT

	 RET		 ;RETURN TO MAIN PROGRAM

;***
;CHARACTER LOOKUP TABLE (5 BYTES PER CHARACTER)
;***

	 ORG	 0400H
TABLE:	 DB	 7FH,08H,08H,08H,7FH	 ;H
	 DB	 7FH,49H,49H,49H,41H	 ;E
	 DB	 7FH,20H,18H,20H,7FH	 ;W
	 DB	 7FH,40H,40H,40H,40H	 ;L
	 DB	 7FH,49H,49H,49H,41H	 ;E
	 DB	 01H,01H,7FH,01H,01H	 ;T
	 DB	 01H,01H,7FH,01H,01H	 ;T
	 DB	 00H,00H,00H,00H,00H	 ;
	 DB	 7FH,05H,05H,05H,02H	 ;P
	 DB	 7EH,05H,05H,05H,7EH	 ;A
	 DB	 3EH,41H,41H,41H,22H	 ;C
	 DB	 7FH,08H,14H,22H,41H	 ;K
	 DB	 7EH,05H,05H,05H,7EH	 ;A
	 DB	 7FH,09H,19H,29H,46H	 ;R
	 DB	 7FH,41H,41H,41H,3EH	 ;D
	 DB	 00H,00H,00H,00H,00H	 ;
	 DB	 00H,00H,00H,00H,00H	 ;

IC is put into simultaneous mode.
This ties the second IC’s D

IN
 (which is

tied to the master IC’s D
OUT

) directly
to the master’s D

IN
. Viewing the circuit

diagram in Figures 1 and 2 in the
data sheet will help the understand-
ing of this process. The simultaneous
mode is written again to connect the
third IC’s D

IN
 (in the second display) to

the master IC’s D
IN

. Instead of writing
the simultaneous mode again to
connect the fourth IC to the master
directly, the same brightness/sleep
mode determined by Control Word
0 (CW0) was written two times in a
row. The first time sets the brightness
and awakens the first three ICs. The
second time the same CW0 is written
causes the data already in the third IC
to serially feed into the fourth IC. This
approach was implemented strictly
for demonstration purposes. The rule
of thumb for serially cascading and
simultaneously controlling the bright-

Figure 2. Assembly Source Code Used to Program the 8751H. (continued)

ness and sleep mode for n ICs in a
display network, is to first write the
simultaneous mode (through CW1) to
the master IC n-1 times.

Entering Data Serially

The transferring of the data from the
controller port to the display’s D

IN

is done serially. Bit 0 of Port 1 of the
controller receives each bit value
of the Carry as the Accumulator is
rotated left through the carry. The
RLC command rotates the Accumula-
tor bits to the observer’s left where
the most significant bit is shifted into
the Carry and the Carry bit is shifted
to the least significant bit position.
After each bit rotation, the Carry’s
value is moved into bit 0 of Port 1,
and that data value is then fed into
the display through the D

IN
 line on

the rising edge of the display’s CLK.
The CLK is then set low again to be
able to enter the next data bit on its

6

	 Mnemonic	 Description	 Byte	 Cyc
ADD	 A,Rn	 Add register to Accumulator	 1	 1
ADD	 A,direct	 Add direct byte to Accumulator	 2	 1
ADD	 A,@Ri	 Add indirect RAM to Accumulator	 1	 1
ADD	 A,#data	 Add immediate data to Accumulator	 2	 1
ADDC	 A,Rn	 Add register to Accumulator with Carry	 1	 1
ADDC	 A,direct	 Add direct byte to A with Carry flag	 2	 1
ADDC	 A,@Ri	 Add indirect RAM to A with Carry flag	 1	 1
ADDC	 A,#data	 Add immediate data to A with Carry flag	 2	 1
SUBB	 A,Rn	 Subtract register from A with Borrow	 1	 1
SUBB	 A,direct	 Subtract direct byte from A with Borrow	 2	 1
SUBB	 A,@Ri	 Subtract indirect RAM from A w Borrow	 1	 1
SUBB	 A,#data	 Subtract immed. data from A w Borrow	 2	 1
INC	 A	 Increment Accumulator	 1	 1
INC	 Rn	 Increment register	 1	 1
INC	 direct	 Increment direct byte	 2	 1
INC	 @Ri	 Increment indirect RAM	 1	 1
DEC	 A	 Decrement Accumulator	 1	 1
DEC	 Rn	 Decrement register	 1	 1
DEC	 direct	 Decrement direct byte	 2	 1
DEC	 @Ri	 Decrement indirect RAM	 1	 1
INC	 DPTR	 Increment Data Pointer	 1	 2
MUL	 AB	 Multiply A & B	 1	 4
DIV	 AB	 Divide A by B	 1	 4
DA	 A	 Decimal Adjust Accumulator	 1	 1

	 Mnemonic	 Description	 Byte	 Cyc
ANL	 A,Rn	 AND register to Accumulator	 1	 1
ANL	 A,direct	 AND direct byte to Accumulator	 2	 1
ANL	 A,@Ri	 AND indirect RAM to Accumulator	 1	 1
ANL	 A,#data	 AND immediate data to Accumulator	 2	 1
ANL	 direct,A	 AND Accumulator to direct byte	 2	 1	
ANL	 direct,#data	 AND immediate data to direct byte	 3	 2
ORL	 A,Rn	 OR register to Accumulator	 1	 1
ORL	 A,direct	 OR direct byte to Accumulator	 2	 1
ORL	 A,@Ri	 OR indirect RAM to Accumulator	 1	 1
ORL	 A,#data	 OR immediate data to Accumulator	 2	 1
ORL	 direct,A	 OR Accumulator to direct byte	 2	 1
ORL	 direct,#data	 OR immediate data to direct byte	 3	 2
XRL	 A,Rn	 Exclusive - OR register to Accumulator	 1	 1
XRL	 A,direct	 Exclusive - OR direct byte to Accumulator	 2	 1
XRL	 A,@Ri	 Exclusive - OR indirect RAM to Accumulator	 1	 1
XRL	 A,#data	 Exclusive - OR immediate data to Accumulator	 2	 1
XRL	 direct,A	 Exclusive - OR Accumulator to direct byte	 2	 1
XRL	 direct,#data	 Exclusive - OR immediate data to direct byte	 3	 2
CLR	 A	 Clear Accumulator	 1	 1
CPL	 A	 Complement Accumulator	 1	 1
RL	 A	 Rotate Accumulator Left	 1	 1
RLC	 A	 Rotate A Left through the Carry flag	 1	 1
RR	 A	 Rotate Accumulator Right	 1	 1
RRC	 A	 Rotate A Right through Carry flag	 1	 1
SWAP	 A	 Swap nibbles within the Accumulator	 1	 1

Logical Operations

Arithmetic Operations

Figure 3. MCS-51 TM Instruction Set Description for 8751H.

(continues)

next rising edge within the loop. The
HCMS-29xx/HCMS-39xx Write Cycle
Diagram and the AC Timing Charac-
teristics in the data sheet were abided
by in this application. In all the sub-
routines concerning data entry, the
CLK is conveniently left low when
the CE is brought high to latch the
data and the routine returns to the
main program. With the CLK low, it is
already set to edge trigger the first D

IN

bit independent of which data entry
subroutine is called.

Displaying the Characters

Fetching characters from a data table
in memory can be implemented in
various ways. Whatever code scheme
is chosen, one must keep in mind
that the Data Pointer and Program
Counter are the only 16-bit words that
the 8751H recognizes. All the other
registers including the accumulator
are only 8-bit bytes.

Register R0 holds the number of
characters to be fetched (17) and is
decremented at the end of the loop
and compared to zero. If R0 is greater
than zero, then another character is
fetched. The DJNZ statement could
be replaced by a CJNE (compare and
jump if not equal) and R0 would not
be needed if one wanted to use less
cycles.

In this application, the data pointer is
used to point to the base address of
the data table. The data table begins
at origin 0400H as was designated
by the CHRTBL equate value near
the beginning of the program. Each
digit is made up of five columns of
data where each column’s data is a
byte. To create the desired character,
imagine pouring a byte into the top
of a character column of LEDs in the
display (most significant bit first).
After filling up the other four columns

7

	 Mnemonic	 Description	 Byte	 Cyc
MOV	 A,Rn	 Move register to Accumulator	 1	 1
MOV	 A,direct	 Move direct byte to Accumulator	 2	 1
MOV	 A,@Ri	 Move indirect RAM to Accumulator	 1	 1
MOV	 A,#data	 Move immediate data to Accumulator	 2	 1
MOV	 Rn,A	 Move Accumulator to register	 1	 1
MOV	 Rn,direct	 Move direct byte to register	 2	 2
MOV	 Rn,#data	 Move immediate data to register	 2	 1
MOV	 direct,A	 Move Accumulator to direct byte	 2	 1
MOV	 direct,Rn	 Move register to direct byte	 2	 2
MOV	 direct,direct	 Move direct byte to direct	 3	 2
MOV	 direct,@Ri	 Move indirect RAM to direct byte	 2	 2
MOV	 direct,#data	 Move immediate data to direct byte	 3	 2
MOV	 @Ri,A	 Move Accumulator to indirect RAM	 1	 1
MOV	 @Ri,direct	 Move direct byte to indirect RAM	 2	 2
MOV	 @Ri,#data	 Move immediate data to indirect RAM.	 2	 1
MOV	 DPTR,#data16	 Load Data Pointer with a 16-bit constant	 3	 2
MOVC	 A,@A+DPTR	 Move Code byte relative to DPTR to A	 1	 2
MOVC	 A,@A+PC	 Move Code byte relative to PC to A	 1	 2
MOVX	 A,@Ri	 Move External RAM (8-bit addr) to A	 1	 2
MOVX	 A,@DPTR	 Move External RAM (16-bit addr) to A	 1	 2
MOVX	 @Ri,A	 Move A to External RAM (8-bit addr)	 1	 2
MOVX	 @DPTR,A	 Move A to External RAM (16-bit addr)	 1	 2
PUSH	 direct	 Push direct byte onto stack	 2	 2	
POP	 direct	 Pop direct byte from stack	 2	 2
XCH	 A,Rn	 Exchange register with Accumulator	 1	 1
XCH	 A,direct	 Exchange direct byte with Accumulator	 2	 1
XCH	 A,@Ri	 Exchange indirect RAM with A	 1	 1
XCHD	 A,@Ri	 Exchange low-order Digit ind. RAM w A	 1	 1

	 Mnemonic	 Description	 Byte	 Cyc
CLR	 C	 Clear Carry flag	 1	 1
CLR	 bit	 Clear direct bit	 2	 1
SETB	 C	 Set Carry flag	 1	 1
SETB	 bit	 Set direct Bit	 2	 1
CPL	 C	 Complement Carry flag	 1	 1
CPL	 bit	 Complement direct bit	 2	 1
ANL	 C,bit	 AND direct bit to Carry flag	 2	 2
ANL	 C,/bit	 AND complement of direct bit to Carry	 2	 2
ORL	 C,bit	 OR direct bit to Carry flag	 2	 2
ORL	 C,/bit	 OR complement of direct bit to Carry	 2	 2
MOV	 C,bit	 Move direct bit to Carry flag	 2	 1
MOV	 bit,C	 Move Carry flag to direct bit	 2	 2

Data Transfer

Boolean Variable Manipulation

Figure 3. MCS-51 TM Instruction Set Description for 8751H. (continued)

with the correct byte infor-mation, the
character data has been entered. The
character counter, register R2 begins
at zero and is incremented by one
up to 17. Each succeeding character’s
first byte of data (first column) is offset
five bytes higher in memory than the
previous one. Thus each increment of
R2 is multiplied by five using the Ac-
cumulator and the B register where
the lower byte of the product is left in
the Accumulator and the upper byte
is left in B. Then this number is added
as an offset to the data table origin
value. First, the lower bytes of the AB
product and Data Pointer are added
(Accumulator and DPL), and then the
upper bytes of the two are added
(B and DPH) with the Carry bit from
the lower byte addition. The data is
entered serially in the same rotation
fashion as described above. The
command MOVC A,@A+DPTR moves
the byte data located at the Data
Pointer plus the Accumulator offset
address into the Accumulator. The Ac-
cumulator’s bits are then serially fed
into the display.

Character Look Up Table

As mentioned earlier, the character
look up table begins at the origin
value 0400H. Each character is
made up of five bytes of data where
each byte shows up as a column on
the display. The data is entered as
described previously, the most signifi-
cant bit (bit eight) first, but only the
first seven rows are made up of LEDs,
thus the eighth bit is arbitrary. Note
that in the table, the byte is made up
of two 4-bit hexadecimal numbers.

(continues)

Program and Machine Control

Mnemoic		 Description	 Byte	 Cyc
ACALL	 addr11	 Absolute Subroutine Call	 2	 2	
ICALL	 addr16	 Long Subroutine Call	 3	 2
RET		 Return from subroutine	 1	 2
RETL		 Return from interrupt	 1	 2
AJMP	 addr11	 Absolute Jump	 2	 2
LJMP	 addr16	 Long Jump	 3	 2
SJMP	 rel	 Short Jump (relative addr)	 2	 2
JMP	 @A+DPTR	 Jump indirect relative to the DPTR	 1	 2
JZ	 rel	 Jump if Accumulator is Zero	 2	 2
JNZ	 rel	 Jump if Accumulator is Not Zero	 2	 2
JC	 rel	 Jump if Carry flag is set	 2	 2
JNC	 rel	 Jump if No Carry flag	 2	 2
JB	 bit,rel	 Jump if direct Bit set	 3	 2
JNB	 bit,rel	 Jump if direct Bit Not set	 3	 2
JBC	 bit,rel	 Jump if direct Bit is set & Clear bit	 3	 2
CJNE	 A,direct,rel	 Compare direct to A & Jump if Not Equal	 3	 2
CJNE	 A,#data,rel	 Comp. immed. to A & Jump if Not Equal	 3	 2
CJNE	 Rn,#data,rel	 Comp. immed. to reg. & Jump if Not Equal	 3	 2
CJNE	 @Ri,#data,rel	 Comp. immed. to ind. & Jump if Not Equal	 3	 2
DJNZ	 Rn,rel	 Decrement register & Jump if Not Zero 	 2	 2
DJNZ	 direct,rel	 Decrement direct & Jump if Not Zero	 3	 2
NOP		 No operation	 1	 1	

Figure 3. MCS-51 TM Instruction Set Description for 8751H. (continued)

The first hex number defines the
lower half of the column and ranges
from 0H = 0000B to 7H = 111B. The H
and B notate hex and binary number
respectively as required by the 8751H.
A “1” corresponds to an “ON” LED and
an “0” corresponds to an “OFF” LED.
The number of different look up tables
that can be used depends on how
much RAM or ROM that is available.
The 8751H has 4K bytes of internal
ROM. Whereas many displays are
limited by internally pre-programmed
ASCII character look up tables, any
character that can be created out of a
5x7 array can be displayed here.

Using other HCMS-29xx/HCMS-39xx
Displays

All of the other HCMS-29xx/
HCMS-39xx displays qualify as substi-
tutes for the two HCMS-2912 displays
used here. With a few wiring changes,
four 4-character displays or one 16-
character display could be chosen
and would operate identically under
the command of the same micro-
controller with the same source code
as listed here. Since there is one IC
for every four characters, the same
Control Word commands would
satisfy any serial 16-character arrange-
ment chosen among these displays.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. Obsoletes 5963-7071EN
5988-7530EN - October 18, 2010

Notes on data addressing modes:
Rn	 Working register R0-R7
direct	 128 internal RAM locations, any I/O port, control, or status register
@Ri	 Indirect internal RAM location addressed by register R0 or R1
#data	 8-bit constant included in instruction
#data16	 16-bit constant included as bytes 2 & 3 of instruction
bit	 128 software flags, any I/O pin, control, or status bit

Notes on program addressing modes:
addr16	 Destination address for LCALL & LJMP may be anywhere within the 64-Kilobyte 	
	 program memory address space.
addr11	 Destination address for ACALL & AJMP will be within the same 2-Kilobyte page
	 of program memory as the first byte of the following instruction.
rel	 SJMP and all conditional jumps include an 8-bit offset byte.
	 Range is +127 to -128 bytes relative to first byte of the following instruction.

All mnemonics copyrighted © Intel Corporation 1979.

