

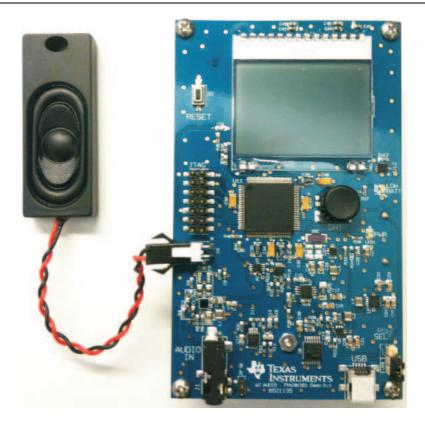
eZAudio TPA2015D1 Demonstration Kit

This user's guide describes the operation of the eZAudio TPA2015D1 Demonstration Kit. This document provides setup instructions and design information including schematic, bill of materials, and printed-circuit board (PCB) layout drawings.

Contents

1	Overv	Overview					
	1.1	Kit Contents	2				
	1.2	Evaluation Board Specifications	3				
2	Quick-Start Guide						
	2.1	Powering the Device	3				
	2.2	Running the Demonstration	4				
3	Hardw	vare Description	7				
	3.1	TPA2015D1 Features	7				
4	Schen	Schematics, PCB and Bill of Materials					
	4.1	Schematics	9				
	4.2	Printed-Circuit Board	12				
	4.3	Bill of Materials					
Apper	ndix A	Technical Specifications	19				
		List of Figures					
1	eZAud	dio TPA2015D1 Demonstration Kit Schematic	9				
2	EVM Supply Generation Schematic						
3	MSP430 Schematic						
4	Display and Joystick Schematics1						
5	Top Assembly						
6	Bottom Copper						
7	Top Copper						
8	Copper Layer 2						
9	Copper Layer 3						

Overview www.ti.com


Overview

The ezAudio TPA2015D1 demonstration kit is a compact and versatile platform that highlights the TPA2015D1 key features of battery-tracking, SpeakerGuard™ automatic gain control (AGC) and integrated boost converter.

The demonstration kit allows the user to quickly demonstrate the advanced features of the TPA2015D1 via an intuitive LCD-based interface. The user can simulate battery depletion in order to measure the input current and power output performance related to portable applications.

The ezAudio TPA2015D1 can be powered by the included batteries or by a USB connection. Although the demonstration board is not designed for evaluation, the kit does contain a mini PCB that can be used for evaluation purposes.

NOTE: This document presents evaluation module (EVM) specifications, audio performance measurements graphs, and design documentation that includes complete circuit descriptions, schematic diagrams, a parts list, and PCB layout design. Gerber (layout) files are available from the TI Web site at http://www.ti.com.

Kit Contents 1.1

- (1) ezAudio TPA2015D1 demonstration board
- (1) TPA2015D1 WCSP (YZH) mini device
- (1) MP3 player
- (1) 3,5-mm audio cable
- (1) AAA battery
- (3) AA batteries
- (1) 8-Ω speaker
- (1) Quick-start guide cards

If any item is missing, contact the Texas Instruments Product information Center nearest you to inquire about a replacement.

www.ti.com Quick-Start Guide

1.2 Evaluation Board Specifications

- Board supply voltage: 4.5 Vdc 5.5 Vdc from one of the following sources:
 - Device USB cable (connected to a personal computer)
 - (3) AA batteries
- · Board supply current: 30 mA, typical
- Breakout power output: 5 Vdc (500 mA, maximum)
- Speaker power: 1 W, maximum
- Dimensions: 10.5 cm × 6.5 cm × 2.2 cm (L × W × H)
- RoHS status: n/a

When the evaluation board is used in USB Host mode, the host connector is capable of supplying power to the connected USB device. The available supply current is limited to ~250 mA unless the evaluation board is powered from an external 5-V supply with a ≥ 600 mA rating.

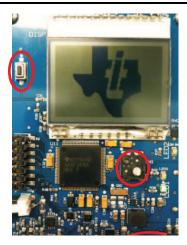
2 Quick-Start Guide

2.1 Powering the Device

- Speaker. Plug the speaker into the white jack on the left side of the board.
- 2. **Audio Cable.** Plug 3,5-mm audio cable into the board and MP3 player.

Battery Power. To turn on the board, move the jumper (bottom right side of board) to the BAT position.

USB Power (Optional). If batteries are discharged or unavailable, the board can be powered over a USB connection. Move the jumper (bottom right side of board) to USB position.


Battery Indicator. A low-battery indicator is on the right side of the joystick. The LED turns on when the battery voltage drops below 3.7 V

Quick-Start Guide www.ti.com

 Adjust Contrast. Click (press down) the joystick button to cycle through different contrast values.
Reset (Optional). A reset button is located to the left of the screen.

5. **MP3 Player.** To turn on the MP3 player, check that the Hold switch is to the left, and press the Play button. To advance to the next song, move the dial in the upper left corner to the right. To turn off, hold the Play button for 3 seconds.

2.2 Running the Demonstration

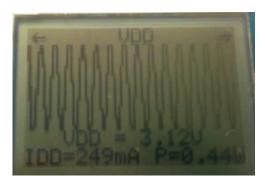
The device defaults to the following settings when booting up: Gain: 20 dB, AGC: 3.97 V, VDD: 3.60 V, Boost: EN.

NOTE: The speaker (or similar load) must be connected to the device to ensure proper measurements. To get more steady current and power measurements, use the included sine wave MP3 file.

1. **Joystick.** Raise VDD to maximum by moving the joystick UP.

www.ti.com Quick-Start Guide

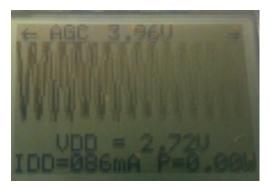
2. MP3 Player. Move the dial in the upper left corner to the right to select the sine wave.



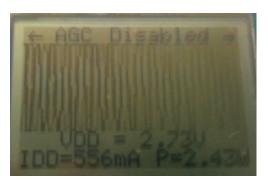
3. **MP3 Player.** Increase the volume to 3/4 of maximum. At that volume, the current is approximately 400 mA (sine wave) and the power output approximately 1 W.

4. **Joystick.** Move the joystick down to bring VDD below the AGC inflection point (<3.97 V). Notice that the current draw (~250 mA) and power output (~0.45 W) decrease.

Explanation. This demonstrates the battery tracking feature of the TPA2015D1. When the battery voltage reaches the AGC threshold, the TPA2015D1 begins to reduce automatically the gain in order to save battery life and protect the speaker.


5. **Joystick.** Move the joystick down twice to decrease the battery voltage. The current and power continue to decrease.

Quick-Start Guide www.ti.com



6. Joystick. Move the joystick to the right until you see AGC on the top menu bar.

7. Joystick. Move the joystick down until the AGC is disabled.

Explanation. Notice the current draw and power output increase, indicating the device is no longer tracking the battery voltage. The current increases in order to maintain power output. The audio also sounds distorted without AGC enabled.

8. **Joystick.** Move the joystick up until AGC is enabled by choosing one of the three values.

- 9. Joystick. Move the joystick to the right until VDD is displayed again.
- 10. Joystick. Move the joystick UP until VDD is at maximum.

www.ti.com Hardware Description

11. MP3 Player. Increase the volume of the MP3 player to 100%.

12. Joystick. Move the joystick to the right until BOOST is displayed

13. Joystick. Move the joystick down to disable the BOOST.

Explanation. When the boost is disabled, the sound is distorted because the signal is clipped at the battery voltage rails. When boost is enabled, the increased headroom for the output swing significantly reduces clipping.

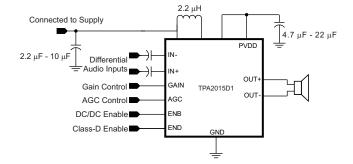
3 Hardware Description

3.1 TPA2015D1 Features

2-W constant output, mono Class-D audio amplifier with integrated boost converter and battery tracking SpeakerGuard™ AGC

Hardware Description www.ti.com

Features


- 2 V into 8 Ω at 3.6 V (6% THD)
- Constant output power of 2 W (3.6 V 5 V)
- 2.3-V to 5.2-V supply voltage
- Battery tracking AGC
- Battery tracking SpeakerGuard™
- High efficiency (81%) (at 1 W and 3.6 V
- Very high PSRR 90 dB
- Ultralow quiescent current (1.7 mA)
- Integrated input low-pass filter
- 2 mm × 2 mm, 0,5-mm pitch, 16-ball WCSP

Applications

- Cell phones/smart phones
- Personal navigation devices
- Notebook PCs
- Portable clocking stations
- Portable DVD players

Benefits

- 36% Louder audio than the leading competition
- Consistent audio loudness across the Li-ion battery
- Direct connection to Li-ion/future battery technologies
- Prevents early shutdown at low-battery voltage (<3 V)
- Protects speakers by preventing clipping
- Eliminates GSM/TDMA frame rate noise
- 27% Better efficiency results in –2x longer battery life
- ~5x Lower quiescent current than the competition
- Rejects out-of-band noise from codec/DAC by 30 dB
- 20% Smaller package size than the competition

4 Schematics, PCB and Bill of Materials

4.1 Schematics

eZ Audio-TPA2015D1 Demo Kit

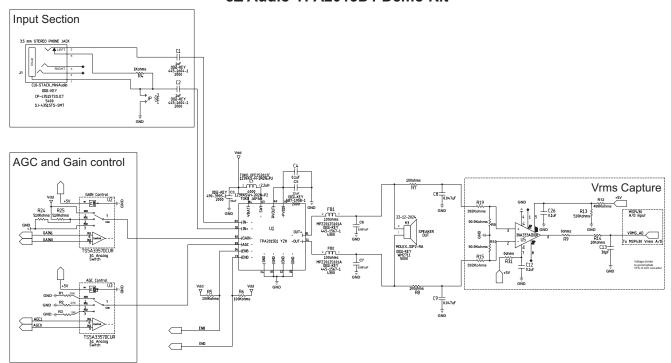


Figure 1. eZAudio TPA2015D1 Demonstration Kit Schematic

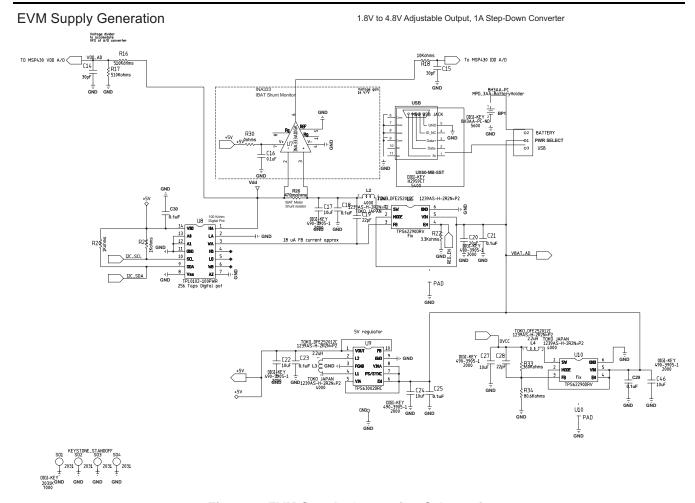


Figure 2. EVM Supply Generation Schematic

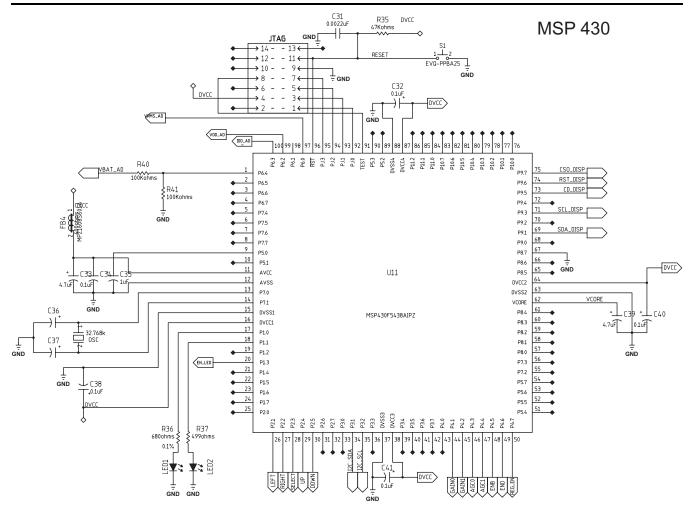


Figure 3. MSP430 Schematic

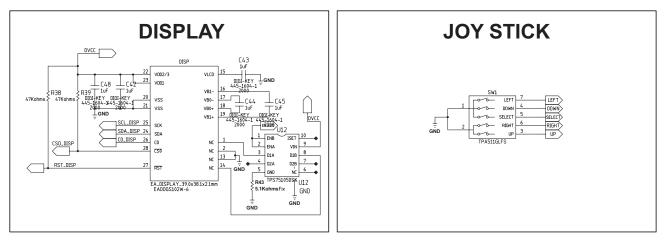


Figure 4. Display and Joystick Schematics

4.2 Printed-Circuit Board

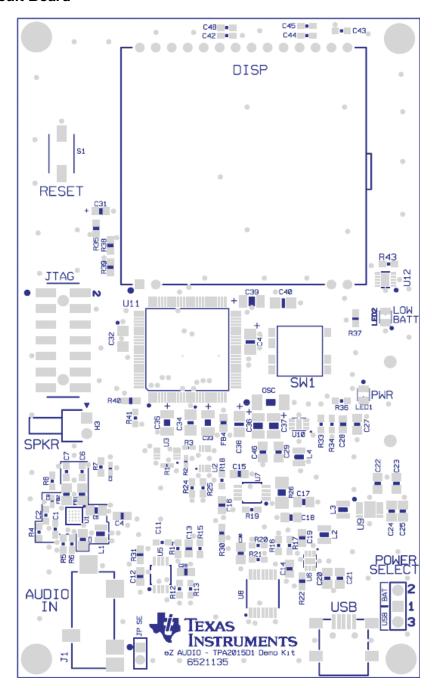


Figure 5. Top Assembly

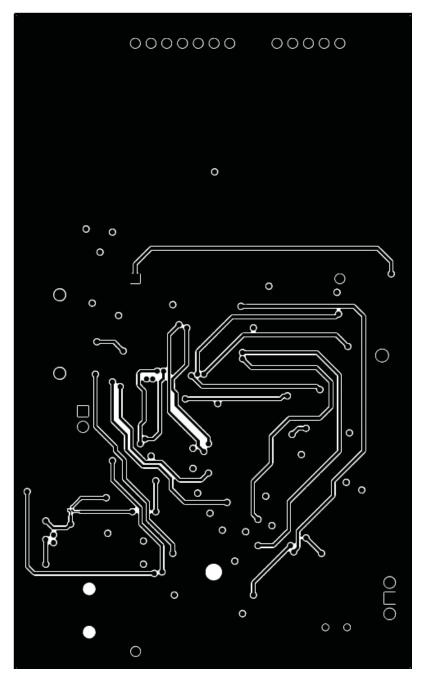


Figure 6. Bottom Copper

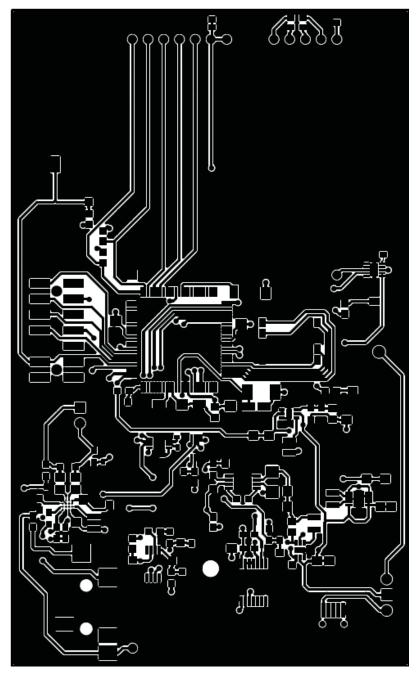


Figure 7. Top Copper

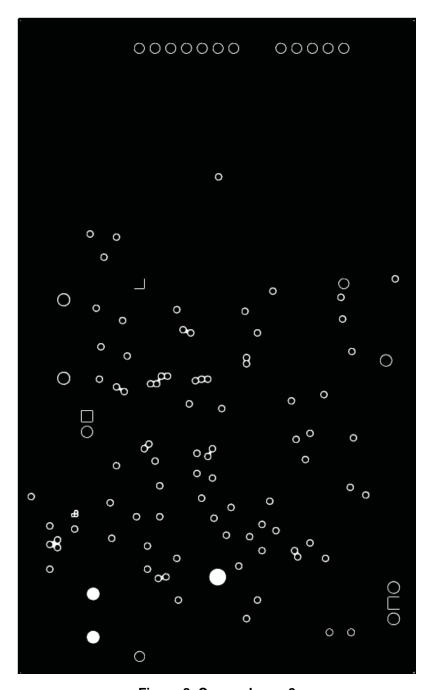


Figure 8. Copper Layer 2

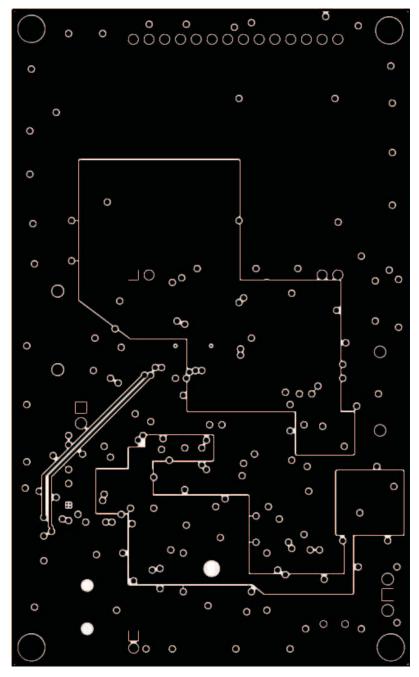


Figure 9. Copper Layer 3

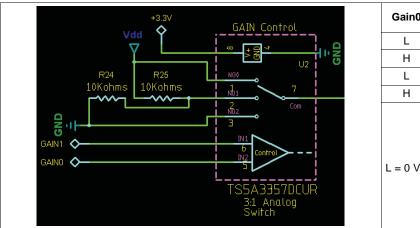
4.3 Bill of Materials

Table 1. Bill of Materials for eZAudio TPA2015D1 Demonstration Kit

Mfr Part No.	Qty	Ref Des	Description	Mfr Name
CAPACITORS				
GRM21BR71A106KE51L	C24,C27,C46		MURATA	
LMK212BJ226MG-T	1	C5	CAP SMD0805 CERM 22UFD 10V 20% X5R ROHS	TAIYO YUDEN
C1608X7R1C105K	8	C1,C2,C42,C43,C44, C45,C48	CAP SMD0603 CERM 1.0UFD 16V 10% X7R ROHS	TDK
NDUCTORS				
1239AS-H-2R2N=P2	4	L1,L2,L3,L4	INDUCTOR POWER SMD1008 2.2uH RDC=80mOHMS 2.3A DFE252012C ROHS	TOKO JAPAN
MPZ2012S101A	2	FB1,FB2	FERRITE BEAD, 100 Ohms 4A 100MHz SM0805 ROHS	TDK
HEADERS/JACKS				
22-12-2024	1	H3	HEADER THU 2P MALE RA 100LS ROHS	MOLEX
SJ-43515TS-SMT	1	J1	JACK AUDIO MINI(3.5MM 3-COND PCB-RA ROHS	CUI STACK
UX60-MB-5ST	1	USB	JACK USB MINIB SMT-RA 5PIN ROHS	HIROSE
CUSTOM JACKS/CONNEC	TORS			
BH3AA-PC	1	BP1	BATTERY HOLDER 3 AA TH ROHS	MPD
STANDOFFS AND HARDW	ARE			
2031	4	SO1,SO2,SO3,SO4	STANDOFF,4-40,1.0INx3/16IN,ALUM RND F-F	KEYSTONE ELECTRONICS
BOM ITEMS WITH NO VAL	ID SORT	NUMBER		
C1608C0G1H102J	2	C6,C7	TI JAPAN ONLY CAPACITOR,SMT,0603,CERAMIC,1000pF,50V,5%	TDK
ERJ-2GEJ393	1	R1	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,39K	PANASONIC
ERJ-2GEJ183	1	R3	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,18K	PANASONIC
ERJ-2GEJ273	1	R2	RESISTOR,SMT,0402,THICK FILM,5%,1/16W,27K	PANASONIC
C1005X7R1C473K	2	C8,C9	CAPACITOR,SMT,0402,CER,47000pF,16V,10%,X7R	TDK
CRCW0603100F	2	R7,R8	RESISTOR,SMT,0603,1%,1/10W,100 OHM	VISHAY
CRCW06031001F	3	R4,R20,R21	RESISTOR,SMT,0603,1%,1/10W,1.00K	VISHAY
CRCW06031003F	4	R5,R6,R40,R41	RESISTOR,SMT,0603,1%,1/10W,100K	VISHAY
0603YC104JAT2A	4	C4,C12,C16,C26	CAPACITOR,SMT,0603,CERAMIC,0.1uF,16V,5%,X7R	AVX
2163-02-01-P2	02-01-P2 1 JP SE HEADER,THU,2P,MALE,2mmLS,SINGLE ROW,1x2,15uGOLD,118TL N		NORCOMP	
DUT_BGA_16YZH			TI	
CRCW06031002F	2	R14, R18	RESISTOR,SMT,0603,1%,1/10W,10.0K	VISHAY
C0603C300J5GAC	3	C13,C14,C15	CAPACITOR,SMT,0603,CERAMIC,COG(NPO),50V,5%, 30pF	KEMET
INA333AIDGK			TI/BURR-BROWN	
ERJ-3GSYJ514 5 R1		R13,R16,R17, R24,R25	RESISTOR,SMT,0603,5%,1/10W,510K	PANASONIC
ERJ-3ENF000	2	R30,R31,R9	RESISTOR,SMT,0603,0 OHM,1%,1/10W	PANASONIC
GRM40Y5V104Z25V	6	C18,C21,C23, C25,C29,C30	25V,±20%,.1uF	MURATA
TPL0102-100PWR	1	U8	256 TAPS DUAL CHAN POT W/NVM	TI
VJ0603A220FXAAT	1	C19	CAPACITOR,SMT,0603,CERAMIC,22pF,50V,1%,COG(NPO),30ppm	VISHAY
RL1632R-R470-F	1	R26	RESISTOR,SMT,1206,THIN FILM, 0.47OHM,1%,1/2W	SISUMO
TPS62290DRV	2	U6,U10	1A STEP DOWN CONV ADJ	TI
TPS63002DRC	1	U9	HIGH EFFIC SING INDUC BUCK BOOST CONV W/ 1.8A SW	TI
ERJ-3GSYJ332	1	R22	RESISTOR,SMT,0603,5%,1/10W,3.3K	PANASONIC
MSP430F5438AIPZ	1	U11	MIXED SIGNAL MICROCONTROLLER	TI
GRM39COG220J50V	1	C28	CAPACITOR,SMT,0603,CERAMIC,50V,5%,22pF	MURATA
ERJ-3GSYJ364	1	R33	RESISTOR,SMT,0603,5%,1/10W,360K	PANASONIC
CRCW06038062F	1	R34	RESISTOR,SMT,0603,1%,1/10W,80.6K	VISHAY
ERJ-3GSYJ473	3	R35,R38,R39	RESISTOR,SMT,0603,5%,1/10W,47K	PANASONIC
T491A104K035AS	5	C32,C34,C38, C40,C41	TAN CAP,SMT,EIA-A,0.10uF,35V,10%	KEMET

Table 1. Bill of Materials for eZAudio TPA2015D1 Demonstration Kit (continued)

Mfr Part No.	Qty	Ref Des	Description	Mfr Name
293D475X5016A2T	2	C33,C39	CAP,TAN,SMT, 4.7uF,16V,±5%,-55~85C	VISHAY SPRAGE
MPZ1608S601A	1	FB4	FERRITE,SMT,0603,600 OHM,1A	TDK
CC4V-T1	1	OSC	*HAND SOLDER*CRYSTAL,SMT,32.768kHz, 9pF±100ppm	MICRO CRYSTAL
ECS-T1AY225R_UN	2	C36,C37	(Uninstalled Part)	UNINSTALLED
ERA-3YEB681V	1	R36	RESISTOR,SMT,0603,680 OHM,0.1%,1/16W	PANASONIC
ERJ-3GSYJ499	1	R37	RESISTOR,SMT,0603,1%,1/10W,499	PANASONIC
EADOGS102W-6	1	DISP	DISPLAY,THU,102X64 DOTS	EA
TPA511GLFS	1	SW1	SWITCH,MULTIDIR,SMD	C&K
TS5A3357DCUR	2	U2,U3	5 OHM SP3T ANALOG SWITCH SINGLE-CHANNEL 3:1 MULTI/DEMULTIPLEXER	TI
06035C222JAT2A	1	C31	CAPACITOR,SMT,0603,CERAMIC,0.0022uF,50V,5%,X7R	AVX
ECS-T1CY105R	1	C35	CAP,TAN,SMT, 1.0uF,16V,20%,DF=0.04	PANASONIC
EVQ-PPBA25	1	S1	SWITCH,SMT,2P,SPST-NO,2.5mm HEIGHT,DUST PROOF	PANASONIC
LTST-C170KGKT	2	LED1,LED2	LED,SMT,0805,ULTRA-BRIGHT GREEN,2.0V	LITEON
TPS75105DSK	1	U12	LOW DROPOUT LED DRIVER	TI
TSM-107-01-T-DV	1	JTAG	HEADER,SMT,14P,2x7,MALE,2 ROWS,100LS	SAMTEC
TSW-103-07-G-S W/SHUNT	1	PWR	SELECT HEADER,THU,3P,1X3,MALE,SINGLE,100LS,100TL WITH SHUNT JUMPER	SAMTEC
CRCW06034993F	1	R12	RESISTOR,SMT,0603,1%,1/10W,499K	VISHAY
ERA-3YEB512V	1	R43	RESISTOR,SMT,0603,5.1K,0.1%,1/16W	No Manufacturer Data
CRCW06033923F	2	R19,R15	RESISTOR,SMT,0603,1%,1/10W,392K	VISHAY
CRCW06039092F	2	R9,R10	RESISTOR,SMT,0603,1%,1/10W,90.9K	VISHAY
Component Count: 115		1	-	•

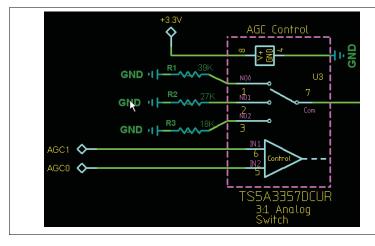


Appendix A Technical Specifications

A.1 Control Signals from MSP430 to TPA2015D1

- Nine signals are used to control functions of the TPA2015D1. These signals come from the onboard MSP430.
- Gain0, Gain1 (Control TPA2015D1 gain)
- AGC0, AGC1 (Control TPA2015D1 inflection point)
- ENB (TPA2015D1 Enable for the boost)
- END (TPA2015D1 Enable for the Class-D)
- REG_EN (Enable for VDD regulator)
- I2C_SCL, I2C_SDA(for Digital POT, VDD control)

Gain0, Gain1

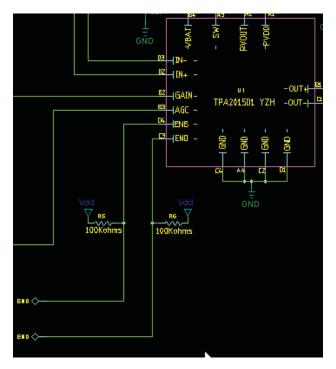


Gain0	Gain1	TPA2015D1 Gain Pin	Gain
L	L	Float	15.5 dB
Н	L	Vdd/2	15.5 dB
L	Н	Vdd	20 dB
Н	Н	GND	6 dB

L = 0 V and H = 3.3 V

Gain0 and Gain1 change the gain settings for the TPA2015D1. They control the 3:1 analog switch to set proper gain voltage.

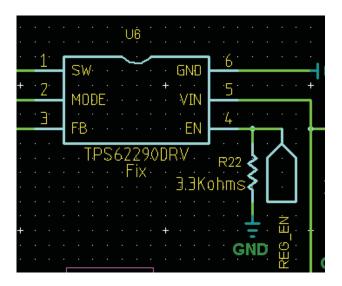
AGC0, AGC1


AGC0	AGC1	TPA2015D1 Inflection Point (V)	RAGC
L	L	Disabled	Open
L	Н	3.35 V	
Н	L	3.78 V	
Н	Н	3.96 V	

L = 0 V and H = 3.3 V

AGC0 and AGC1 change the inflection point for the TPA2015D1. They control the 3:1 analog switch to set the external AGC resistor.

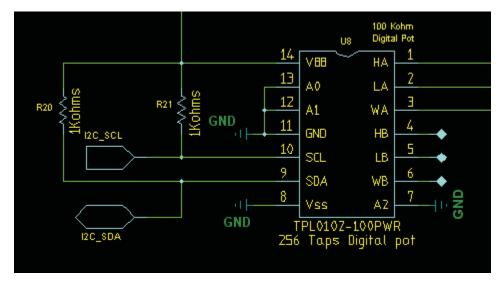
ENB, END



END: Enable for the Class-D. Set to *Logic High* to enable

ENB: Enable for the Boost converter. Set to *Logic High* to enable

These control signals must be asserted HIGH after all switches and digital potentiometers have been set to default conditions, and Default VDD voltage has been measured by Stellaris MCU (VDD default is 3.6 V) .


REG_EN

This control signal enables U6, the adjustable VDD regulator. This signal needs to be asserted HIGH after the analog switches and digital potentiometers have been set to default conditions.

I2C_SDA, I2C_SCL: Digital POT control

These are the I2C control signals for the $100-k\Omega$ digital potentiometer. The digital potentiometer must be set to position #41 (VDD=3.6 V) before U6 is enabled. The digital potentiometer sets the feedback voltage for VDD regulator.

I2C Slave Address: 0x50 (for MSP430 hardware I2C)

Register Address: 0x00 (write/read)

Hexadecimal Code for wiper position #41 (VDD=3.7 V): 0x29

Wiper position can be read back from this register at power up (Nonvolatile).

Allowed wiper range for this application is from #85 (0x55) to #32 (0x20), which corresponds to supply voltage range $1.8\ V$ to $4.8\ V$

For the full voltage range use USB power option (batteries give only up to 4.5 V).

For more information on the digital potentiometer, see the TPL0102 data sheet (SLIS134).

Table 2. Control From MSP430 to TPA2015D1(1)

TPA2015D1	MSP430 MCU
Gain0	P4.1 (pin 44)
Gain1	P4.2 (pin 45)
AGC0	P4.3 (pin 46)
AGC1	P4.4 (pin47)
ENB	P4.5 (pin 48)
END	P4.6 (pin 49)
REG_EN	P4.7 (pin 50)
I2C_SDA	P3.1 (pin 34)
I2C_SCL	P3.2 (pin 35)

⁽¹⁾ MSP430 Control signals are +3.3V compatible

A.2 Measurements and Calculations on eZAudio TPA2015D1EVM

- Supply voltage (VDD_AD)
 - Measured voltage must be multiplied by 2. VDD = 2 × Vmeas
- Supply current (IDD_AD)
 - Is measured as a voltage out of INA333. Idd = Vmeas/4
- Output power
 - Is calculated as P = (Voutrms)² / Rload

· Display inflection point

Note: Output power and efficiency are calculated by MSP430 MCU.

Table 3. MSP430 MCU A/D Signal Equivalents⁽¹⁾

TPA2015D1	MSP430 MCU
VRMS_AD	P6.1 (pin 98)
VDD_AD	P6.2 (pin 99)
IDD_AD	P6.3 (pin 100)

⁽¹⁾ A/D VFS range is 3V (internal reference is set to 3V)

A.3 eZAudio TPA2015D1EVM Power-up Sequence

- 1. ENB = Low
- 2. END = Low
- 3. REG_EN = Low
- 4. Gain0 = Low
- 5. Gain1 = Low
- 6. AGC0 = Low
- 7. AGC1 = Low
- 8. Set Digital pot wiper resistance to position #41 (write 0x29 to register 0x00) and wait 50 ms.
- 9. REG_EN = High
- 10. Measure supply voltage to make sure it's around 3.6V
- 11. END = High
- 12. ENB = High

Note: After the preceding sequence, the user can change gain and inflection point settings and activate/deactivate boost converter.

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 2.5 V to 5.5 V and the output voltage range of 0 V to 5.5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 85° C. The EVM is designed to operate properly with certain components above 85° C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com

TI E2E Community Home Page