Document information

<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>BFU730F, 2.4-2.5GHz LNA, WiFi (WLAN)</td>
</tr>
<tr>
<td>Abstract</td>
<td>This document provides circuit simulation, schematic, layout, BOM and typical EVB performance for a 2.4-2.5GHz WiFi (WLAN) LNA</td>
</tr>
</tbody>
</table>
Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.1</td>
<td>15 October 2012</td>
<td>First publication</td>
</tr>
</tbody>
</table>

Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

The BFU730F is a discrete HBT that is produced using NXP Semiconductors’ advanced 110 GHz ft SiGe:C BiCMOS process. SiGe:C is a normal silicon germanium process with the addition of Carbon in the base layer of the NPN transistor. The presence of carbon in the base layer suppresses the boron diffusion during wafer processing. This allows a steeper and narrower SiGe HBT base and a heavier doped base. As a result, lower base resistance, lower noise and higher cut off frequency can be achieved.

The BFU730F is one of a series of transistors made in SiGe:C. BFU710F, BFU760F and BFU790F are the other types. BFU710F is intended for ultra low current applications. The BFU760F and BFU790F are high current types and are intended for application where linearity is key.

New 6th & 7th Generation Wideband transistors from NXP offer best RF noise figure / gain tradeoff at 12GHz drawing lowest current which means best signal reception at low power, enabling products to be more sensitive in noisy environments and friendlier to the environment.

Key Benefits:

- Application up to 18 GHz and higher
- Broad choice of parts for the perfect fit in the application
- Lowest current consumption meaning greener products
- SOT343F package for high performance and easy manufacturing
2. Requirements and design of the 2.4-2.5GHz WiFi LNA

The circuit shown in this application note is intended to demonstrate the performance of the BFU730F in a 2.4-2.5 GHz LNA for e.g. 802.11a/b/g & 802.11n “MIMO” WiFi (WLAN) applications.

Key requirements for this application are:

- Frequency Band 2.4 – 2.5GHz
- Gain
- Input/output Match
- Linearity
- NF
- Turn ON/OFF Time
Table 1. 2.4-2.5GHz WiFi LNA Design Target Spec
Target specification for 2.4–2.5GHz WiFi LNA

<table>
<thead>
<tr>
<th>VCC</th>
<th>Icc</th>
<th>NF</th>
<th>Gain</th>
<th>IP1dB</th>
<th>IIP3</th>
<th>IRL</th>
<th>ORL</th>
<th>Turn ON/OFF Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>10</td>
<td><2</td>
<td>>15 but < 20dB</td>
<td>>-14</td>
<td>>-4</td>
<td>>10</td>
<td>>10</td>
<td><500 nS</td>
</tr>
</tbody>
</table>

3. Design and Simulation

The 2.4-2.5 GHz WiFi LNA consists of one stage BFU730F amplifier. For this amplifier the minimum number of external components is used for low cost purpose:

- 1 multilayer chip inductor, lower cost comparing to wirewound type
- 4 resistors, low cost part
- 5 capacitors, low cost part

The design has been simulated using Agilent’s Advanced Design System (ADS), and the simulation results are given in the following figures.

The LNA shows excellent match at input/output with greater than 10dB return loss and gain of 17dB @2.4GHz with good Noise Figure of 1.08 dB.

With only 10.8mA it also shows a high input P1 dB compression of –12dBm@2.4GHz, as well as high input IP3 of -1.8dBm.

The LNA has super fast Turn ON and OFF time with 138nS and 35nS respectively.

The designed LNA is unconditionally stable at 10 MHz-26 GHz.

3.1 BFU730F 2.4-2.5GHz WiFi LNA Simulation
Fig 2. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Circuit
3.2 BFU730F 2.4-2.5GHz WiFi LNA Simulation Result

3.2.1 Gain and Match in 2.4-2.5GHz Band

Fig 3. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Gain and Match
3.2.2 Noise Figure in 2.4-2.5GHz Band

Fig 4. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Noise Figure
3.2.3 Stability

![Graph showing stability vs frequency](image)

Fig 5. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Stability

4. Application Board

The 2.4-2.5GHz WiFi LNA evaluation board simplifies the evaluation of the BFU730F application. The evaluation board enables testing of the device performance and requires no additional support circuitry. The board is fully assembled with the BFU730F transistor, including input and output matching components, to optimize performance.

The board is supplied with two SMA connectors for input and output connection to RF test equipment.

4.1 Application Circuit Schematic
Fig 6. BFUXXX Universal Demo Board (w/De-gen & Feedback): Schematic

Fig 7. BFU730F 2.4-2.5GHz WiFi LNA: Schematic

Note: Figure 6 is the schematic for BFUXXX universal demo board, some assembly changes are made to accommodate this simplified low cost design, the revised schematic is shown in figure 7, and the changes are as following:

1. L1, L2, L4, C4, R6: not populated
2. Move R1 (39K) to L2 location, short two solder pads of R1 or put a 0 ohm jumper
3. Short two solder pads of R6 or put a 0 ohm jumper
4.2 Application Board Bill-Of-Material

Table 2. BFU730F 2.4-2.5GHz WiFi LNA Part List
Customer can choose their preferred vendor but should be aware that the performance could be affected.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Reference</th>
<th>Part Number</th>
<th>Vendor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>C1</td>
<td>GRM1555C1H180JZ01D</td>
<td>Murata</td>
<td>18pF</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C3</td>
<td>GRM1555C1H102JA01</td>
<td>Murata</td>
<td>1000pF</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>C6</td>
<td>GRM1555C1H120JZ01D</td>
<td>Murata</td>
<td>12pF</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>C12</td>
<td>GRM1885C1H8R2DZ01D</td>
<td>Murata</td>
<td>8.2pF</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>C13</td>
<td>GRM155R71C103KA01D</td>
<td>Murata</td>
<td>10nF</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>J1</td>
<td>90120-0762</td>
<td>Molex</td>
<td>CON-2PIN</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>J2,J3</td>
<td>901-10110</td>
<td>Amphenol</td>
<td>CON-SMA-1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>L3</td>
<td>LQG15HS3N3S02D</td>
<td>Murata</td>
<td>3.3nH</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Q1</td>
<td>BFU730F</td>
<td>NXP SEMICONDUCTORS</td>
<td>BFU730F</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>R1</td>
<td>ERJ-2GEJ393X</td>
<td>Panasonic - ECG</td>
<td>39K</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>R2</td>
<td>ERJ-2RKF10R0X</td>
<td>Panasonic - ECG</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>R3</td>
<td>ERJ-2RKF68R1X</td>
<td>Panasonic - ECG</td>
<td>68.1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>R7</td>
<td>ERJ-2RKF2201X</td>
<td>Panasonic - ECG</td>
<td>2.2K</td>
</tr>
</tbody>
</table>
4.3 Typical Application Board Test Result

4.3.1 S-Parameter – Gain and Match

![S-Parameter Plot]

Fig 8. BFU730F 2.4-2.5GHz WiFi LNA: S-Parameter
4.3.2 P1dB

Fig 9. BFU730F 2.4-2.5GHz WiFi LNA: P1dB
4.3.3 Linearity/IP3

Two tones: f1: 2.4GHz, f2: 2.401GHz, -30dBm each tone, tone spacing: 1MHz

OIP3 = 64/2 + (-16) = 16dBm

IIP3 = OIP3 - Gain = 16-17.8 = -1.8dBm

Fig 10. BFU730F 2.4-2.5GHz WiFi LNA: IP3
4.3.4 Stability

K Factor

Fig 11. BFU730F 2.4-2.5GHz WiFi LNA: Stability

4.3.5 Noise Figure Measurement

A network analyzer is used to measure the input loss between the input of RF connector (J2) to the first matching component (C1) of the device. For input loss measurement the first match component is removed and the pad at the input connector (J2) side is shorted to ground as illustrated in Figure 12.

The measured return loss is approximately 0.28dB across the band, therefore 0.14dB input loss must be de-embedded to get the LNA noise figure.

The Noise figure data in the graphic below is the noise figure after de-embedding the connector and input loss.
The following diagram shows the setup to test LNA Turn ON and Turn OFF time. The LNA Turn ON and Turn OFF time are mainly determined by the R-C time constant of the biasing circuitries: on the Base bias path the $\tau_1 = R_3 C_3$ and on the Base-Collector Feedback path $\tau_2 \approx (R_2 + R_3) C_{12}$, on the Collector bias path $\tau_3 \approx (R_2 + R_3) C_{12}$.

Due to much larger value of C_3 obviously τ_2 path will be the faster charge path on the base of the transistor hence lead to a faster Turn On time comparing with circuit topology that has no feedback.

Set the waveform generator to square mode and the output amplitude at 3Vrms with high output impedance. The waveform generator has adequate output current to drive the LNA therefore no extra DC power supply is required which simplifies the test setup.

Set the RF signal generator output level to -25dBm at 2.4GHz and increase its level until the output DC on the oscilloscope is at 25mV on 5mV/division, the signal generator RF output level is approximately -12dBm.

4.3.6 LNA Turn ON/OFF Time

![Noise Figure Graph](image)

Fig 12. BFU730F 2.4-2.5GHz WiFi LNA: Noise Figure

Table 1: Noise & Gain

<table>
<thead>
<tr>
<th>FF</th>
<th>Frequency</th>
<th>Noise Fig.</th>
<th>Noise Temp.</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4GHz</td>
<td>16.87 dB</td>
<td>87.84 K</td>
<td>16.87 dB</td>
<td>15.15 dB</td>
</tr>
</tbody>
</table>

Measurement Complete

Date: 6.FEB.2012 15:10:00
It is very important to keep the cables as short as possible at input and output of the LNA so the propagation delay difference on cables between the two channels is minimized.

It is also critical to set the oscilloscope input impedance to 50ohm on channel 2 so the diode detector can discharge quickly to avoid a false result on the Turn OFF time testing.

![Fig 13. LNA Turn ON and Turn OFF time test setup](image)
4.3.6.1 LNA Turn ON Time

3.0Vrms, 100KHz and 50% duty cycle pulse applied on VCC pin, measured from 50% of input pulse to 90% of max. output power

Fig 14. BFU730F 2.4-2.5GHz WiFi LNA: Turn ON time
4.3.6.2 LNA Turn OFF Time

![Graph showing LNA Turn OFF Time](image)

3.0Vrms, 100KHz and 50% duty cycle pulse applied on VCC pin, measured from 50% of input pulse to 10% of max. output power

Fig 15. BFU730F 2.4-2.5GHz WiFi LNA: Turn OFF time

4.3.7 Summary Of the Typical Evaluation Board Test Result

Table 3. Typical results measured on the BFU730F 2.4-2.5GHz WiFi LNA Evaluation Board

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Vcc</td>
<td>3.0</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Icc</td>
<td>10.8</td>
<td>mA</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>@2.4GHz</td>
<td>NF</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>@2.5GHz</td>
<td>NF</td>
<td>1.08</td>
</tr>
<tr>
<td>Power Gain</td>
<td>@2.4GHz</td>
<td>Gp</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>@2.5GHz</td>
<td>Gp</td>
<td>17.5</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>@2.4GHz</td>
<td>IRL</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>@2.5GHz</td>
<td>IRL</td>
<td>10.6</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>@2.4GHz</td>
<td>ORL</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>@2.5GHz</td>
<td>ORL</td>
<td>11.9</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>@2.4GHz</td>
<td>ISLrev</td>
<td>23.9</td>
</tr>
</tbody>
</table>
Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>@2.5GHz ISLrev</td>
<td>23.2</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Input 1dB Gain Compression Point</td>
<td>Pi1dB</td>
<td>-12.4</td>
<td>dBm</td>
</tr>
<tr>
<td>@2.5GHz Pi1dB</td>
<td>-12.2</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Output 1dB Gain Compression Point</td>
<td>PL1dB</td>
<td>4.4</td>
<td>dBm</td>
</tr>
<tr>
<td>@2.5GHz PL1dB</td>
<td>4.4</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Input Third Order Intercept Point</td>
<td>IIP3</td>
<td>-1.8</td>
<td>dBm</td>
</tr>
<tr>
<td>Two Tones: f1: 2.4GHz, f2: 2.401GHz, power: -30dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Third Order Intercept Point</td>
<td>OIP3</td>
<td>16.5</td>
<td>dBm</td>
</tr>
<tr>
<td>Two Tones: f1: 2.4GHz, f2: 2.401GHz, power: -30dBm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability (0-26GHz)</td>
<td>K</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>LNA Turn ON/OFF Time</td>
<td>Ton</td>
<td>138</td>
<td>nS</td>
</tr>
<tr>
<td></td>
<td>Toff</td>
<td>35</td>
<td>nS</td>
</tr>
</tbody>
</table>
5. Legal information

5.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

5.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

5.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

5.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> — owned by <Company name>

5.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.
6. List of figures

Fig 1. BFUXXX Universal Demo Board/BFU730F 2.4-2.5GHz WiFi LNA EVB Demo Board4
Fig 2. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Circuit...6
Fig 3. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Gain and Match...7
Fig 4. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Noise Figure..8
Fig 5. BFU730F 2.4-2.5GHz WiFi LNA Simulation: Stability ..9
Fig 6. BFUXXX Universal Demo Board(w/De-gen & Feedback): Schematic10
Fig 7. BFU730F 2.4-2.5GHz WiFi LNA: Schematic ...10
Fig 8. BFU730F 2.4-2.5GHz WiFi LNA: S-Parameter ..12
Fig 9. BFU730F 2.4-2.5GHz WiFi LNA: P1dB13
Fig 10. BFU730F 2.4-2.5GHz WiFi LNA: IP314
Fig 11. BFU730F 2.4-2.5GHz WiFi LNA: Stability15
Fig 12. BFU730F 2.4-2.5GHz WiFi LNA: Noise Figure ..16
Fig 13. LNA Turn ON and Turn OFF time test setup...17
Fig 14. BFU730F 2.4-2.5GHz WiFi LNA: Turn ON time ...18
Fig 15. BFU730F 2.4-2.5GHz WiFi LNA: Turn OFF time ...19
7. List of tables

Table 1. 2.4-2.5GHz WiFi LNA Design Target Spec........5
Table 2. BFU730F 2.4-2.5GHz WiFi LNA Part List.........11
Table 3. Typical results measured on the BFU730F 2.4-2.5GHz WiFi LNA Evaluation Board19
8. Contents

1. Introduction ... 3
2. Requirements and design of the 2.4-2.5GHz WiFi LNA .. 4
3. Design and Simulation... 5
 3.1 BFU730F 2.4-2.5GHz WiFi LNA Simulation........ 5
 3.2 BFU730F 2.4-2.5GHz WiFi LNA Simulation Result ... 7
 3.2.1 Gain and Match in 2.4-2.5GHz Band 7
 3.2.2 Noise Figure in 2.4-2.5GHz Band 8
 3.2.3 Stability .. 9
4. Application Board ... 9
 4.1 Application Circuit Schematic 9
 4.2 Application Board Bill-Of-Material 11
 4.3 Typical Application Board Test Result 12
 4.3.1 S-Parameter – Gain and Match 12
 4.3.2 P1dB .. 13
 4.3.3 Linearity/IP3 .. 14
 4.3.4 Stability .. 15
 4.3.5 Noise Figure Measurement 15
 4.3.6 LNA Turn ON/OFF Time 16
 4.3.6.1 LNA Turn ON Time 18
 4.3.6.2 LNA Turn OFF Time 19
 4.3.7 Summary Of the Typical Evaluation Board Test Result ... 19
5. Legal information .. 21
 5.1 Definitions .. 21
 5.2 Disclaimers .. 21
 5.3 Licenses ... 21
 5.4 Patents ... 21
 5.5 Trademarks .. 21
6. List of figures .. 22
7. List of tables .. 23
8. Contents ... 24