

# Design Note – DN05033/D

# A 12V, Off-line Power Supply With Primary Side Feedback

#### **ON Semiconductor**

| Device               | Application                                                              | Input Voltage | <b>Output Power</b> | Topology    | I/O Isolation               |
|----------------------|--------------------------------------------------------------------------|---------------|---------------------|-------------|-----------------------------|
| NCP1251B<br>NDD04N60 | White Goods, Small<br>Instruments, E-<br>Meters, Industrial<br>Equipment | 90 – 267 Vac  | 20 Watts            | DCM Flyback | 2.5 kV primary to secondary |

### Other Specification

|                 | Output 1      | Output 2 | Output 3 | Output 4 |
|-----------------|---------------|----------|----------|----------|
| Output Voltage  | 12 Vdc +/- 5% | N/A      | N/A      | N/A      |
| Ripple          | < 2%          | N/A      | N/A      | N/A      |
| Nominal Current | 1.8 Amps      | N/A      | N/A      | N/A      |
| Max Current     | 2 Amps        | N/A      | N/A      | N/A      |
| Min Current     | zero          | N/A      | N/A      | N/A      |

| PFC (Yes/No)           | No         |
|------------------------|------------|
| Nominal Efficiency     | >80%       |
| Inrush Limiting / Fuse | Yes        |
| Operating Temp. Range  | 0 to 50C   |
| Cooling Method /       | Convection |
| Supply Orientation     | NA         |
| Signal Level Control   | No         |

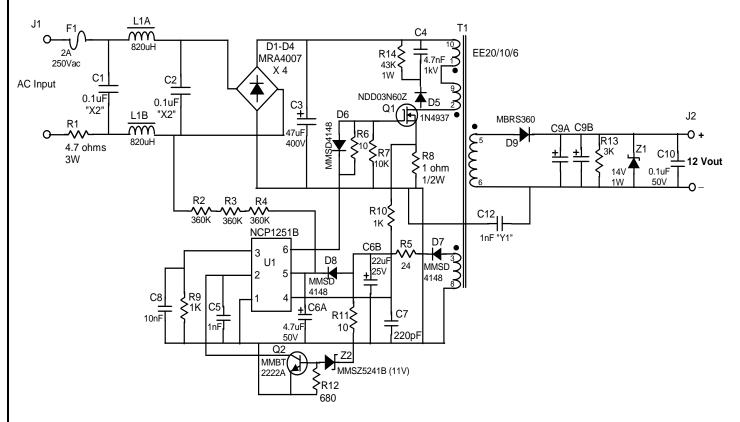
Others Input EMI filter

## **Circuit Description**

This Design Note describes a very simple, low cost, primary side controlled, off-line flyback power supply using ON Semiconductor's NCP1251B current mode controller (TSOP6 package) and an NDD04N60 D-Pak Mosfet.

The design dispenses with the conventional TL431/optocoupler feedback scheme and uses primary side voltage sensing on the NCP1251's Vcc rail which is derived from an aux winding on the transformer. This scheme provides tight line regulation and a load regulation of +/- 5% which is more than adequate for most applications. The acceptable load regulation is achieved by tight coupling (bifilar wound) between the main 12V secondary and the 12V aux winding in the transformer. The voltage sensing circuit is comprised of Z2 and Q2. The zener voltage of Z2 plus the VBE drop of Q2 sets the nominal

output voltage. The load regulation over the usable load range and the nominal output voltage can be further optimized by adjusting the values of R5 and R11, respectively.


Over-current limiting is provided by sensing the peak current in the MOSFET Q1 via R8. Once the 800 mV threshold level on U1's pin 4 is exceeded, the circuit will go a "hiccup" mode until the over-current condition is removed. An optional output OVP clamp is implemented via Z1 to limit the maximum no load output voltage.

## **Key Features**

- Primary side voltage sensing no optocoupler
- Input EMI filter for conducted EMI compliance
- Schottky output rectifier for high efficiency
- Current mode control with adjustable output current limit setpoint

#### DN05033/D

### **Schematic**



#### NOTES:

- 1. Crossed lines on schematic are NOT connected.
- 2. Z1/R13 are optional OV clamp/pre-load for zero load protection.
- 3. R1 is for inrush limiting use carbon comp or wire wound.
- 4. L1A/L1B are Wurth 7447728215 components (820 uH, 500mA).
- 5. Output caps (C9A/B) are radial lead, low impedance types (UCC LXV series or similar).
- 6. R5 should be adjusted for optimum load regulation depending aux winding leakage inductance (typically 15 to 68 ohms).
- 7. Z2 sets nominal Vout.
- 8. R11 is for Vcc/Voutput trimming.
- 9. R8 sets max output current.
- 10. See drawing for T1 details.

20 Watt NCP1251 Power Supply with Primary Side Sense (Rev 7A)

#### © 2012 ON Semiconductor.

**Disclaimer**: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Frank Cathell, e-mail: f.cathell@onsemi.com

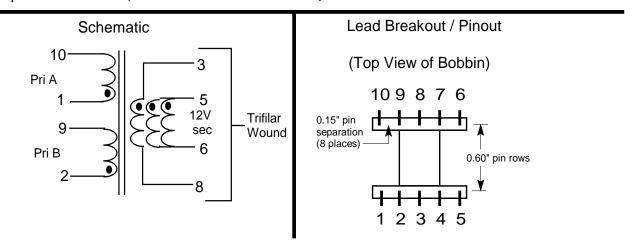
## DN05033/D MAGNETICS DESIGN DATA SHEET

Project / Customer: 24 watt, 12 vout NCP1251 Flyback with primary side sensing

Part Description: 24 watt flyback transformer, 12Vout (Wurth part # 750313284)

Schematic ID: T1

Core Type: EE20/10/6 ferrite core; 3C90 material or similar

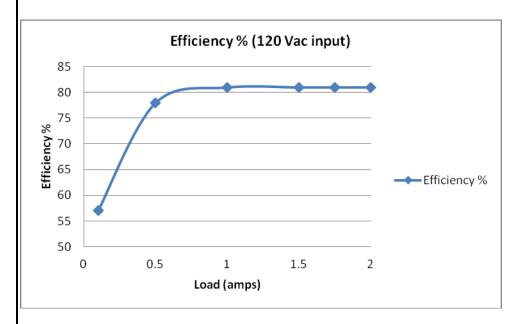

Core Gap: Gap for 190 +/- 200uH across Primary A (pins 1 - 10)

Inductance: 750 uH total (+/- 5%) measured from pin 1 to pin 9 with pins 2 and 10 connected

Bobbin Type: 10 pin horizontal mount for EE20/10/6

| Windings (in order): Winding # / type | Turns / Material / Gauge / Insulation Data                                                                                                                                              |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary A (1 - 10)                    | 30T of #28HN over 1 layer (25 TPL). Insulate for 1 kV to next winding. Self leads to pins.                                                                                              |
| 12V Secondary/Vcc (5 - 6, 3 - 8)      | 6 turns trifilar of #26 triple insulated wire over one. layer. The outer winding on schematic is Vcc (3 - 8). The 12V secondary (5 - 6) uses two wires. Self leads to pins per drawing. |
| Primary B (2 - 9)                     | Same as Primary A. Insulate with tape and self-leads to pins.                                                                                                                           |

Hipot: 2.5 kV from primaries & Vcc to secondary for 1 minute.




### DN05033/D

# **Output Load Regulation**



# **Efficiency Plot**



## References:

NCP1251 Data Sheet: <a href="http://www.onsemi.com/pub\_link/Collateral/NCP1251-D.PDF">http://www.onsemi.com/pub\_link/Collateral/NCP1251-D.PDF</a>

ON Semiconductor NCP1251 Design Notes: DN05012, DN05017, DN05028, DN05029

Flyback Transformer Design Aid:

http://www.onsemi.com/PowerSolutions/supportDoc.do?type=tools&rpn=NCP1075