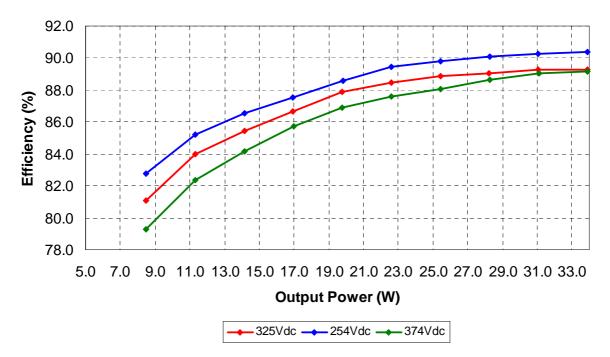


1 Startup

The output voltage and current at startup are shown in the image below. Input voltage is 230Vac. The output was fully loaded (48V, 700mA).

Channel 1 shows the output voltage (20V/div, 40ms/div).

Channel 3 shows the output current (500mA/div).

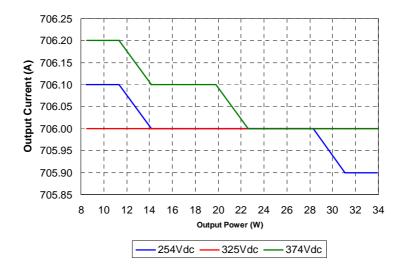


2 Efficiency

The efficiency data are shown in the tables and graph below. For simplicity and accuracy of measurements, the data was measured using a DC input.

The load was composed of 3 to 12 LEDs (700mA nominal current).

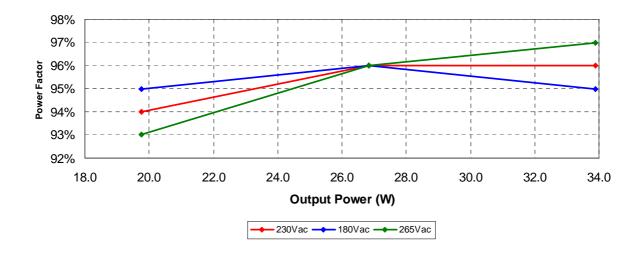
lout	Vout			Vin	Pin	Ploss	
(mA)	(Vdc)	Pout (W)	lin (mA)	(Vdc)	(W)	(W)	Eff (%)
706.1	12.00	8.47	40.3	254	10.24	1.76	82.78
706.1	16.03	11.32	52.3	254	13.28	1.97	85.20
706.0	20.05	14.16	64.4	254	16.36	2.20	86.54
706.0	24.00	16.94	76.2	254	19.35	2.41	87.54
706.0	28.05	19.80	88.0	254	22.35	2.55	88.60
706.0	32.05	22.63	99.6	254	25.30	2.67	89.44
706.0	36.02	25.43	111.5	254	28.32	2.89	89.79
706.0	40.06	28.28	123.6	254	31.39	3.11	90.09
705.9	44.03	31.08	135.6	254	34.44	3.36	90.24
705.9	48.02	33.90	147.7	254	37.52	3.62	90.35

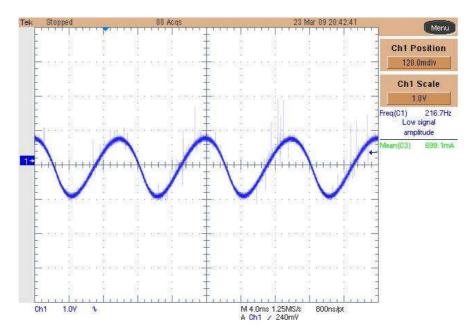


lout	Vout			Vin	Pin	Ploss	
(mA)	(Vdc)	Pout (W)	lin (mA)	(Vdc)	(W)	(W)	Eff (%)
706.0	12.03	8.49	32.2	325	10.47	1.98	81.08
706.0	16.04	11.32	41.5	325	13.49	2.16	83.96
706.0	20.02	14.13	50.9	325	16.54	2.41	85.44
706.0	24.01	16.95	60.2	325	19.57	2.61	86.64
706.0	28.00	19.77	69.2	325	22.49	2.72	87.90
706.0	32.01	22.60	78.6	325	25.55	2.95	88.47
706.0	36.00	25.42	88.0	325	28.60	3.18	88.87
706.0	40.00	28.24	97.6	325	31.72	3.48	89.03
706.0	44.00	31.06	107.1	325	34.81	3.74	89.25
706.0	48.03	33.91	116.9	325	37.99	4.08	89.25

lout	Vout			Vin	Pin	Ploss	
(mA)	(Vdc)	Pout (W)	lin (mA)	(Vdc)	(W)	(W)	Eff (%)
706.2	12.03	8.50	28.7	374	10.72	2.22	79.26
706.2	16.04	11.33	36.8	374	13.75	2.42	82.37
706.1	20.02	14.14	44.9	374	16.79	2.66	84.18
706.1	24.02	16.96	52.9	374	19.78	2.82	85.73
706.1	28.03	19.79	60.9	374	22.78	2.98	86.90
706.0	32.02	22.61	69.0	374	25.81	3.20	87.60
706.0	36.01	25.42	77.2	374	28.87	3.45	88.05
706.0	40.04	28.27	85.3	374	31.90	3.63	88.61
706.0	44.04	31.09	93.4	374	34.93	3.84	89.01
706.0	48.04	33.92	101.7	374	38.04	4.12	89.17

3 Output Current Regulation

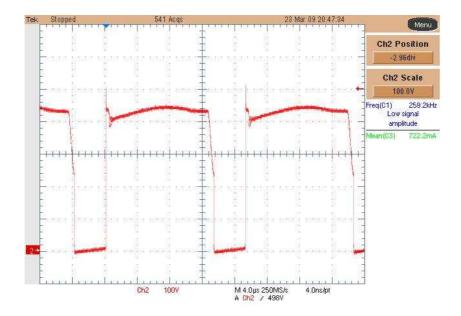

The output current versus output power graph is plotted below.


4 Power Factor

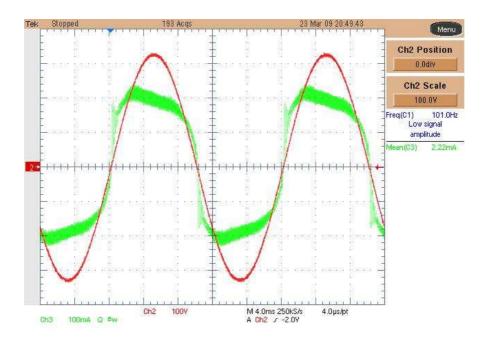
The Power Factor graph for the three input voltages is shown below:

5 Output Ripple Voltage

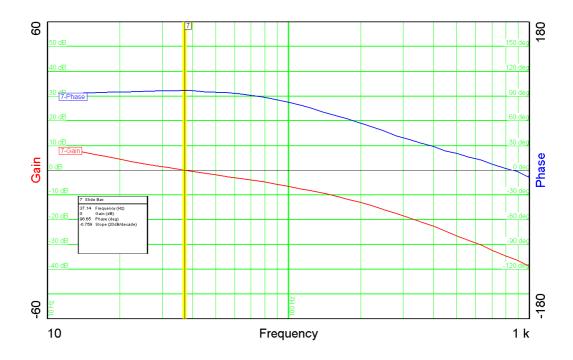
The output ripple voltage is shown in the plot below. The input was set to 230Vac and the load was set to 700mA, 48V. Channel 1 shows the output ac voltage (1 V/div, 4ms/div).


6 Output Ripple Current

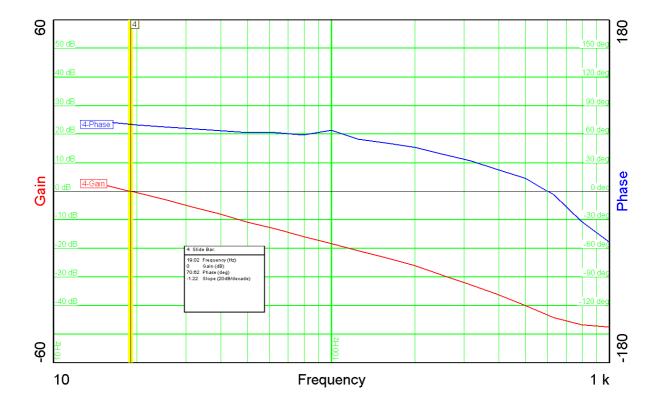
The output ripple current is shown in the plot below. The input was set at 230Vac and the load was set to 700mA, 48V. Channel 3 shows the output current (200mA/div, 4ms/div).


7 Switching Node Waveform

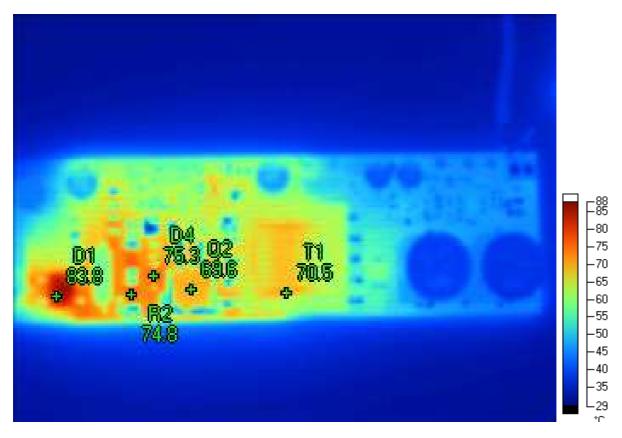
The image below shows the voltage on the drain of the switching node (Q2), with a 230Vac input, and a 700mA, 48V load. Channel 3 shows the drain voltage (100V/div, 4us/div).



8 Input Voltage and Current Waveforms (same conditions)

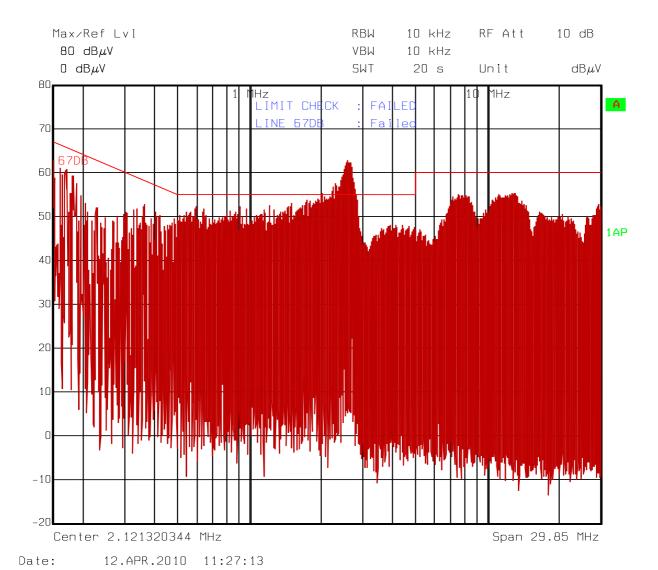

9 Loop Response

The image below shows the loop response of the converter measured with a 325Vdc input, with 3 LEDs (700mA, 12V, 8.4W). Phase margin is 96.65 deg. and crossover frequency is 37.14 Hz.


The image below shows the loop response of the converter measured with a 325Vdc input, but in this case with 12 LEDs (700mA, 48V, 33.6W). Phase margin is 70.62 deg. and crossover frequency is 19.02Hz.

10 Thermal Image

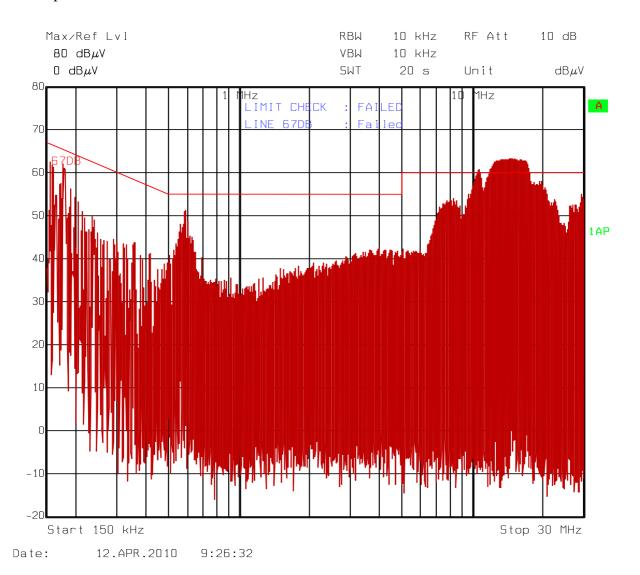
The image below shows the thermal image in still air taken at full load and 230Vac, while the ambient temperature was 25C.


Markers

Label	Temperature	Emissivity	Background
T1	70.5 ℃	0.95	25.0 ℃
Q2	69.6 ℃	0.95	25.0 ℃
D1	83.8 ℃	0.95	25.0 ℃
D4	75.3 ℃	0.95	25.0 ℃
R2	74.8 ℃	0.95	25.0 ℃

11 Conducted EMI emission

The EMI noise was measured with a standard line impedance stabilization network (LISN). The input was set to 230 Vac and the load was set to 700 mA, 48 V.



The image below shows the EMI noise measurement with two additional decoupling capacitors (1500pF) between the input lines and earth.

The input was set to 230Vac and the load was set to 700mA, 48V.

PMP4501 Rev.C Test Results

<u>For Feasibility Evaluation Only, in Laboratory/Development Environments.</u> The EVM is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

Certain Instructions. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be indentified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

<u>Safety-Critical or Life-Critical Applications</u>. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors <u>www.ti.com/omap</u>

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated