

PMP6306, 40-V, 450-mA, Non-Dimmable, T8 LED Driver Using TPS92210

This reference design, PMP6306, is designed as a 18-W, non-dimmable, T8 LED lighting driver that uses the TPS92210. The driver is used for the off-line, single-stage, corrected power factor which provides a 450-mA constant current to drive 13 high-brightness (HB) LEDs series with a universal input range.

Contents

1	Description	2
	1.1 Typical Applications	2
	1.2 Features	
2	Electrical Performance Specifications	
3	Schematic	
4	Theory of Operation	
5	EVM Assembly Drawing and PCB Layout	
6 7	Performance Data and Typical Characteristic Curves	
′	Bill of Materials	12
	List of Figures	
1	PMP6306 Schematic	
2	Secondary-Side Load Current Channel	4
3	Top Copper	5
4	Bottom Copper	5
5	Bottom Assembly Drawing	5
6	Test Equipment and Flow Chart	6
7	Power Factor	6
8	Total Harmonic Distortion	7
9	Output Current	7
10	Output Voltage	8
11	Output Power	8
12	Efficiency	9
13	Output Ripple Current	9
14	Turnon Delay Time	10
15	Overvoltage Protection	11
16	Short-Circuit Protection	12
	List of Tables	
1	PMP6306 Electrical Performance Specifications	2
2	PMP6306 Bill of Materials	12

Description www.ti.com

1 Description

The PMP6306 reference design is a 18-W, ac-to-dc converter that converts 90-Vrms to 265-Vrms ac input to a typical 40-V output voltage and supplies a 450-mA constant current. This end-application is targeted at T8 and T5 lamps with a nominal 450-mA output. The TPS92210, the LED lighting driver, employs constant on-time control to implement better PF performance and includes cascade architecture to reduce switching loss in the primary side. Furthermore, the TPS92210 (SLUS989) provides overcurrent and overvoltage protection, low cost of list of materials, and suitability for use as the replacement for T8 fluorescent tube.

1.1 Typical Applications

- T8/T5 fluorescent tube drivers
- · Down and architectural wall sconces
- General LED lighting

1.2 Features

- · Single-stage PFC flyback
- 90-Vrms to 265-Vrms off-line operation
- · Power factor correction.
- · Constant-current control
- · Overvoltage protection
- · Short-circuit protection
- · Isolation design

2 Electrical Performance Specifications

Table 1. PMP6306 Electrical Performance Specifications

Parameter	Test Conditions	Min	Тур	Max	Units
Input Characteristics		<u>'</u>	•		
Voltage range		90		265	Vrms
Power Factor (PF)	Output load = 13 LEDs series at 240 Vac	0.902			
Total Harmonic Distortion (THD)				15%	
Output Characteristics		<u>'</u>	•		
Output voltage, Vout	Output current = 450 mA		40		V
Output load current, lout			450		mA
Output current ripple	Co = 680 μF			20%	
Systems characteristics					
Efficiency			85%		

www.ti.com Schematic

3 Schematic

The schematic (Figure 1) is for reference only. For purposes of clarity, some of the detailed component parameters are not shown. Consult the bill of materials (Table 2) for additional information.

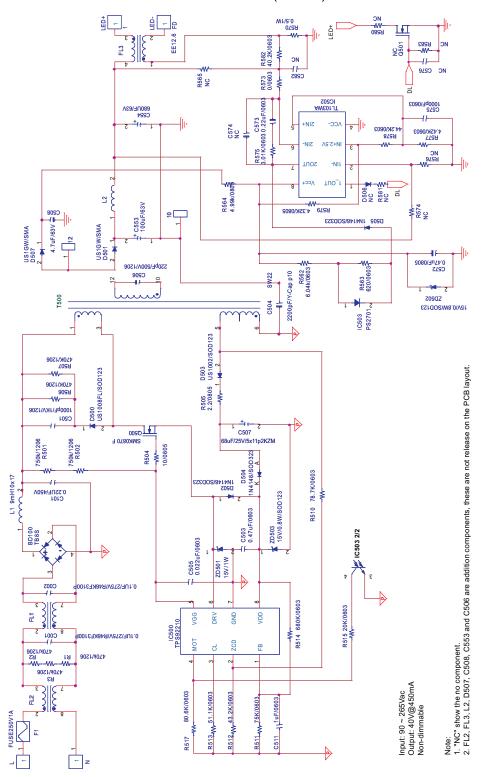


Figure 1. PMP6306 Schematic

Theory of Operation www.ti.com

4 Theory of Operation

The data sheet for the TPS92210 controller <u>SLUS989</u> details its operation and features. In the secondary-side current feedback, the single-stage output on the driver secondary side is a flyback configuration consisting of D501 and π -filter, C553, C554., and L2. Current-sense resistor R570 converts LED load current to a ground-referenced voltage. The voltage of R570 is compared by a reference IC502 from divider R577 and R578. This current amplifier configuration uses closed-loop current regulation for the load LEDs. The collector of the photo-coupler IC503 is connected to OTM pin for constant on-time control.

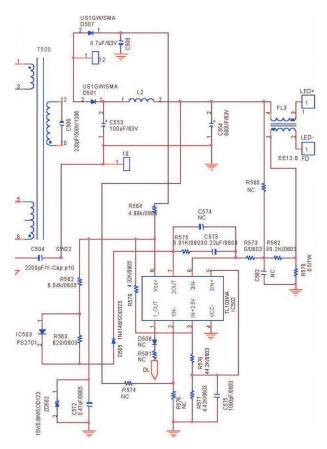


Figure 2. Secondary-Side Load Current Channel

EVM Assembly Drawing and PCB Layout 5

Figure 3 through Figure 4 shows the design of the T8 EVM printed-circuit board (PCB). The PCB dimensions are 220 mm (L) x 18 mm (W) x 10mm(H); the PCB materials FR406 or compatible, two layers, and 2-oz copper on each layer.

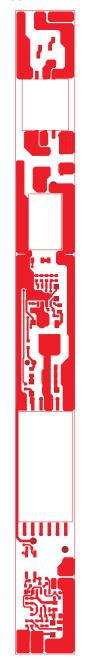


Figure 3. Top Copper

Figure 4. Bottom Copper

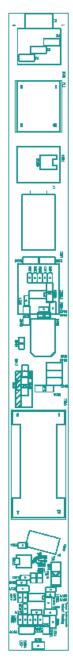


Figure 5. Bottom Assembly Drawing

6 Performance Data and Typical Characteristic Curves

Figure 7 to Figure 12 present typical performance curves for PMP6306, 40-V at 450-mA non-dimmable T8 LED driver. The test equipment and flowchart are shown in Figure 6.

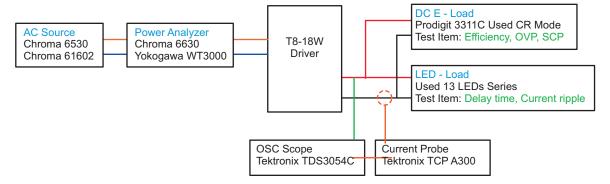


Figure 6. Test Equipment and Flow Chart

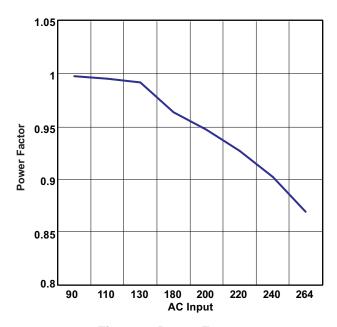


Figure 7. Power Factor

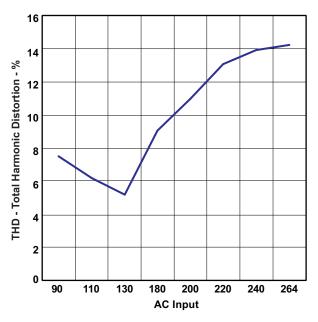


Figure 8. Total Harmonic Distortion

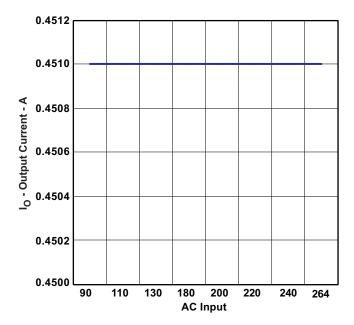


Figure 9. Output Current

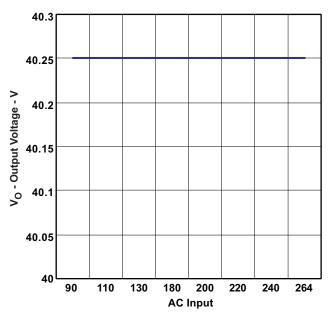


Figure 10. Output Voltage

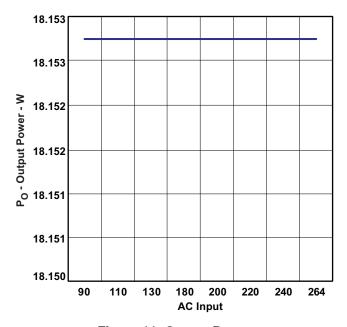


Figure 11. Output Power

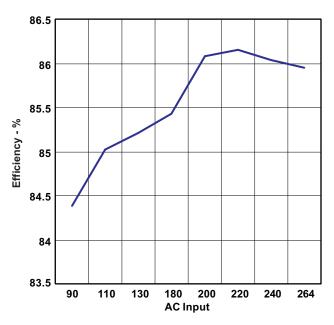


Figure 12. Efficiency

AC Input	lp-p	lmean	Current Rate	Current Rate
90	156mA	454mA	1, 10,0	AC Source: Chroma 6530
265	156mA	454mA	±/ 100/	Power Analyzer: Chroma 6630 Ou tput Load: LED Load used 13 LEDs series.

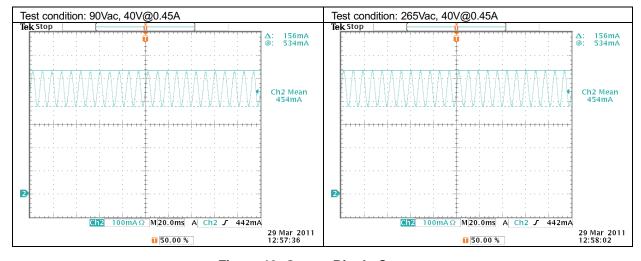


Figure 13. Output Ripple Current

AC Input	Delay Time	Current Rate
90	4001118	AC Source: Chroma 6530
		Power Analyzer: Chroma 6630
265	260ms	Output Load: LED Load used 13 LEDs series.

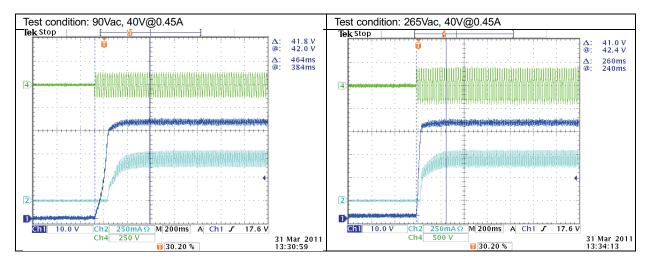


Figure 14. Turnon Delay Time

AC Input	OVP		Current Rate	
AC Input	After	Before	Current Rate	
90	51V	317	AC Source: Chroma 6530 Power Analyzer: Chroma 6630 DC E -Load: Prodigit 3311C used CR mode (setting 87.2 ohm)	
265	51.8V	51 /\/		

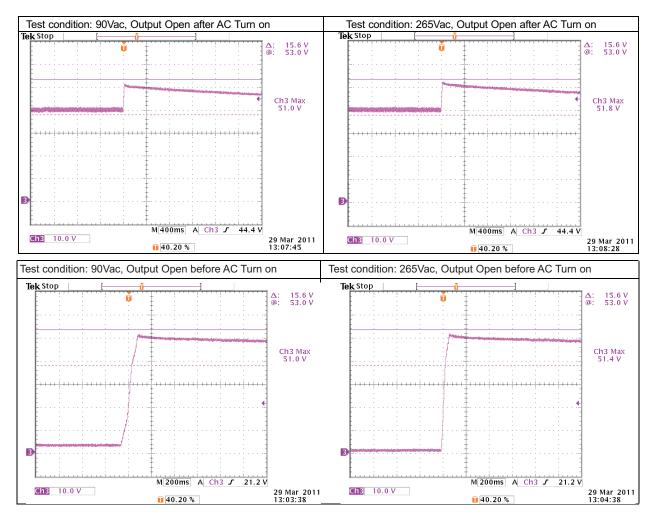


Figure 15. Overvoltage Protection

Bill of Materials www.ti.com

AC Input	SCP		Current Rate	
Ac input	lmax	Irms	Current Nate	
90	792mA	2001117	AC Source: Chroma 6530 Power Analyzer: Chroma 6630 DC E -Load: Prodigit 3311C used CR mode (used SHORT function)	
265	968mA	-04 A		

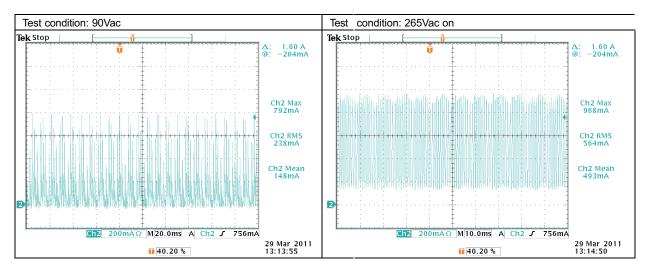


Figure 16. Short-Circuit Protection

7 Bill of Materials

Table 2. PMP6306 Bill of Materials

Part Reference	Part No	Description	MFR
BD100	TB8S	BD 800V 1A	PANJIT
C001	R46KF3100P	CAP 0.1 μF 275V	PAC
C002	R46KF3100P	CAP 0.1 μF 276V	PAC
C101	MMX 630 104	CAP 0.22 µF 450V	PAC
C501		CAP 470 pF 1kV 1206	Holy Stone
C503		CAP 0.47 µF 25V X7R 0603	Holy Stone
C504		CAP Y2 2200 pF P10	PAC
C505		CAP 0.022 µF 25V X7R 0603	Holy Stone
C506		CAP 220 pF 500V 1206	Holy Stone
C507		CAP 68 µF 25V KZM 5x11 p2	NCC
C508		CAP 4.7 μF 63V 1206	Holy Stone
C553		CAP 100 μF 63V 5x11 p5	NCC
C554		CAP 680 μF 63V 10x40 p5	LTEC
C572		CAP 0.47 µF 25V X7R 0805	Holy Stone
C573		CAP 0.22 µF 25V X7R 0603	Holy Stone
C575		CAP 1000 pF 25V X7R 0603	Holy Stone
D500	US1008FL/SOD123	DIO 800V 1A SOD-123	PANJIT
D501	US1GW/SMA	DIO 400V 1A SMA	PANJIT
D502	1N4148/SOD323	DIO 100V 0.2A 0.2W SOD-323	PANJIT
D503	US1002/SOD123	DIO 200V 1A SOD-123	PANJIT
D504	1N4148/SOD323	DIO 100V 0.2A 0.2W SOD-323	PANJIT
D505	1N4148/SOD323	DIO 100V 0.2A 0.2W SOD-323	PANJIT

www.ti.com Bill of Materials

Table 2. PMP6306 Bill of Materials (continued)

Part Reference	Part No	Description	MFR
D507	US1GW/SMA	DIO 400V 1A SMA	PANJIT
F1	FUSE250V1A	FUSE 250V 1A	PAC
FL1	TME100423T	CM Choke	TRANSFORMER
FL2	TME110057L	CM Choke	TRANSFORMER
FL3	TME110056L	CM Choke	TRANSFORMER
IC500	TPS92210	IC Green-Mode Flyback Controller	TI
IC502	TL103WA	IC Dual Operational Amplifiers with Internal Reference	TI
IC503	PS2701	IC Photo High Isolation Voltage	NEC
Q500	SMK0870F	MOSFET 700V 8A TO-220F	AUK
L1	TME100230L	9mH10x17	TRANSFORMER
L2	TME110058L	150µH10x17	TRANSFORMER
R1		RES 470k 1206	YAGEO
R2		RES 470k 1206	YAGEO
R3		RES 470k 1206	YAGEO
R501		RES 750k 1206	YAGEO
R502		RES 750k 1206	YAGEO
R504		RES 10R 0805	YAGEO
R505		RES 2R2 0805	YAGEO
R506		RES 470k HV 1206	YAGEO
R507		RES 470k HV 1206	YAGEO
R510		RES 78.7k 0603	YAGEO
R511		RES 75k 0603	YAGEO
R512		RES 43.2k 0603	YAGEO
R513		RES 51.1k 0603	YAGEO
R514		RES 680k 0603	YAGEO
R515		RES 20k 0603	YAGEO
R517		RES 80.6k 0603	YAGEO
R562		RES 6.04k 0603	YAGEO
R563		RES 620 ohm 0603	YAGEO
R564		RES 4.99k 0805	YAGEO
R570		RES 0.5 ohm 1W	YAGEO
R573		RES 0 ohm 0603	YAGEO
R575		RES 3.01k 0603	YAGEO
R576		RES 6.65k 0603	YAGEO
R577		RES 4.42k 0603	YAGEO
R578		RES 44.2k 0603	YAGEO
R579		RES 4.32k 0805	YAGEO
R582		RES 40.2k 0603	YAGEO
R584		RES 910 1206 1W	YAGEO
T500	TME100414T	EW15 250 μH	TRANSFORMER
ZD501		ZENER 15V 1W	PANJIT
ZD502		ZENER 15V 0.8W SOD-124	PANJIT
ZD503		ZENER 15V 0.8W SOD-125	PANJIT

Evaluation Board/Kit Important Notice

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT**, **DEMONSTRATION**, **OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM Warnings and Restrictions

It is important to operate this EVM within the input voltage range of 90 V to 265 V and the output voltage range of 36 V to 44 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 84°C. The EVM is designed to operate properly with certain components above 84°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
----------	--------------

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors <u>www.ti.com/omap</u>

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated