

1849 Fortune Drive, San Jose, CA 95131, USA • Tel: (408) 944-0800 • http://www.micrel.com

CENTAUR KS8695PX Integrated Multi-Port PCI Gateway Solution

Demonstration Board Hardware Description

Version 1.0

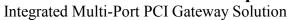
September 2003

TABLE OF CONTENTS

1.0	GENERAL INFORMATION	4
1.1 1.2 1.3	REVISION HISTORYINTRODUCTIONHARDWARE FEATURES	5
2.0	FUNCTIONAL BLOCK DIAGRAM	6
3.0	GETTING STARTED	7
3.1	CONFIGURING PC COM PORT SETTINGS	7
4.0	MEMORY MAP	
4.1		
4	4.1.1 Board Reset	9
4	4.1.2 System Clock	9
4	4.1.3 Jumpers	9
4	4.1.4 Chip Select Assignments	10
4	4.1.5 SDRAM	
4.2	FLASH	
4.3	MINI-PCI INTERFACE	14
4.4	External Interfaces	
4	4.4.1 WAN Interface	
4	4.4.2 LAN Interfaces	
4	4.4.3 UART	
4	4.4.4 Multi-ICE/JTAG Connector	
4	4.4.5 LEDs	
4	4.4.6 GPIO	
4.5	POWER AND GROUND	17

FIGURES AND TABLES

Figure I KS8695PX Demo Board Block Diagram	6
Figure 2 COM Port Configuration	8
Figure 3 KS8695PX SDRAM Interface	11
Figure 4 KS8695PX Flash Interface	13
Figure 5 KS8695PX MiniPCI Interface	14
Table 1 Default Memory Map	8
Table 2 Memory Map Example	9
Table 3 Configuration Jumpers	10
Table 4 Chip Select Assignments	
Table 5 KS8695PX SDRAM Signals	12
Table 6 Voltage Test Points	17



General Information 1.0

1.1 Revision History

Revision	Date	Description
1.0	9-26-03	Initial Release

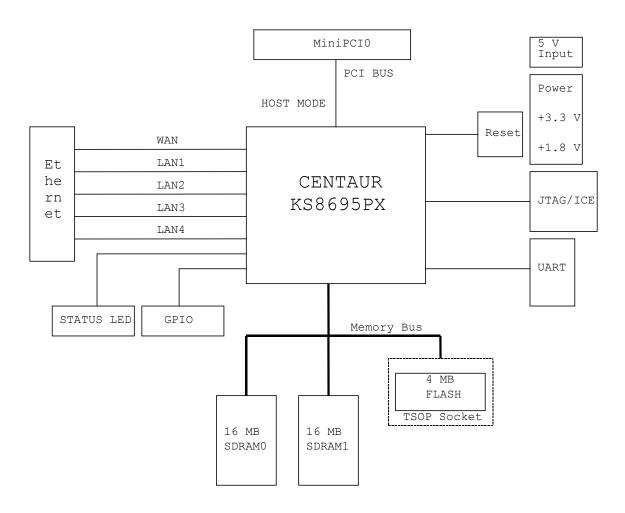
CENTAUR KS8695PX Demo Board Description

1.2 Introduction

The KS8695PX Demonstration Board is intended to provide a convenient means to evaluate the functionality of the new KS8695PX Integrated Multi-Port PCI Gateway and jump start software development. Micrel provides a complete Linux based SOHO Router software solution with which to evaluate the KS8695PX functionality. The SOHO router software includes a web based configuration utility to allow quick and easy device setup. The demonstration board also has hardware support for a mini-PCI connector to address the 802.11a/b/g wireless gateway router market, as well as a host of other applications that take advantage of the multitude of devices that connect to PCI, miniPCI, or cardbus.

Packing List

The KS8695PX Evaluation Kit includes:


- 1 KS8695PX Demo Board
- 1 5.0 V, 4.0A DC power supply
- 1 Micrel Evaluation Kit CD

1.3 Hardware Features

- CENTAUR™ KS8695PX Integrated Multi-Port PCI Gateway Solution featuring *XceleRouter™* Technology
- 1 Mini-PCI connector
- 32 MB of SDRAM in 2 chips in a 4M x 32 bit configuration
- 4 MB of FLASH Memory, socketed for ease of development.
- 4 LAN 10/100 Ethernet Ports with 3 LED's Per Port
- 1 WAN 10/100 Ethernet Port with 3 LEDs
- JTAG port for Multi-ICE connection
- UART DB-9 connector for hyperterminal connection
- Power LED

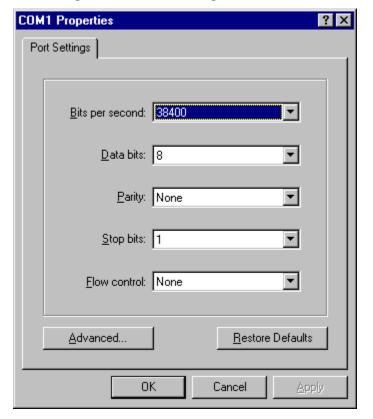
2.0 Functional Block Diagram

Figure 1 KS8695PX Demo Board Block Diagram

CENTAUR KS8695PX Demo Board Description

Integrated Multi-Port PCI Gateway Solution

3.0 Getting Started


This section describes how to get the KS8695PX Reference Board up and running with Micrel's SOHO router software and your PC. You will need:

- Micrel KS8695PX Demo Board
- Micrel provided 5.0 V power supply.
- 1 Category 5 ethernet cable for the LAN, 1 Category 5 ethernet cable for the WAN.
- 1 Null serial cable with female to female connectors for console port connection. (Optional).
- 1 PC.
- 1. Connect the included 5.0 V power supply to the KS8695PX reference board and plug it into a wall socket. When the board is plugged in, or when the reset button on the board is depressed, you should see a flashing LED pattern. This is the power on self-test (POST).
- 2. The ports on the KS8695PX board are labeled as WAN and LAN. Connect a PC to one of the LAN ports and Internet service to the WAN port on the board. Internet service can be replaced with a PC running a web server.
- 3. Connect a null serial cable (Optional) from the serial port of the KS8695PX Reference Board to a PC to monitor Linux kernel boot time messages. After the boot, a shell prompt is displayed for accepting Linux shell commands. For instance, type the "ls" command to list the files of the current directory.

3.1 Configuring PC COM port settings

The Windows Hyper Terminal can be used as a console to communicate with the KS8695PX Reference Board. The configuration settings for serial communication are shown below.

Figure 2 COM Port Configuration

4.0 Memory Map

Upon power up, the KS8695PX memory map is configured as shown below.

Table 1 Default Memory Map

Address Range	Region Size	Description
0x03FF0000-0x04000000	64 kbytes	KS8695PX Configuration Register
		Space
0x02000000-0x03FEFFFF	32Mbytes	Not Configured
0x00000000-0x01FFFFFF	32Mbytes	Flash Bank 0

The default base address for the KS8695PX system configuration registers is 0x03ff0000. After power up, the user is free to re-map the memory for his/her specific application. Here is an example of the memory space remapped for operation:

Table 2 Memory Map Example

Address Range	Region Size	Description
0x03FF0000-0x04000000	64 kbyte	KS8695PX Configuration Register
		Space
0x03E00000-0x03FEFFFF	2 Mbyte	Spare
0x03A00000-0x03DFFFFF	4 Mbyte	External I/O bank 2
0x03600000-0x039FFFFF	4 Mbyte	External I/O bank 1
0x03200000-0x0381FFFF	4 Mbyte	External I/O bank 0
0x02800000-0x031FFFFF	10 Mbyte	Space
0x01480000-0x027FFFFF	32 Mbyte	FLASH Expansion Space
0x01400000-0x0147FFFF	500 kbyte	FLASH
0x01000000-0x013FFFFF	4 Mbyte	SDRAM Expansion Space
0x00000000-0x00FFFFFF	16 Mbyte	SDRAM

Please see the KS8695PX Detailed Register Description document for more information.

4.1 KS8695PX

4.1.1 Board Reset

The KS8695PX reference board provides both a power on reset and a push button reset, as well as circuitry to reset the board using the Multi-ICE. At power on, the board is automatically reset. The user can also press S1, the reset button on the board for a manual reset. After any reset, expect the LEDs to flash indicating the power on self test.

4.1.2 System Clock

The system clock is generated using a 25 MHz crystal (Y1). The crystal is connected to the XCLK1 and XCLK2 inputs on the KS8695PX. The clock is specified as 3.3V tolerant, +/- 100 ppm.

4.1.3 Jumpers

There are a number of jumpers and test points on the board to facilitate configuration and testing of the KS8695PX. Below is a table that lists the jumpers and test points, their purpose, and the recommended configuration on the board.

Table 3 Configuration Jumpers

Configuration	Jumper	Description	Recommended
Test1	JP3	No Connection for normal operation.	No Connection
Test2	JP4	No Connection for normal operation.	No Connection
M66EN	JP9	PCI 66 MHz Enable. (Not available	'0' 33 MHz for
		on this board.)	this board to
			operate
GPIO[11:6]	JP5	GPIO test points for testing	No connection

4.1.4 Chip Select Assignments

Table 4 Chip Select Assignments

KS8695PX Chip Select	KS8695PX Pin #	Device
Signal		
SDCSN0	P5	SDRAM Bank 0
SDCSN1	R4	SDRAM Bank 1
RCSN0	P15	FLASH
RCSN1	R15	Not assigned
ECSN0	R16	Not assigned
ECSN1	T16	Not assigned
ECSN2	U16	Not assigned

4.1.5 SDRAM

The KS8695PX reference board supports 32 MB of SDRAM with 2 chips in a 4Mx32 bit configuration. The KS8695PX provides a glueless interface to the SDRAM as shown in Figure 2. The SDRAM interface can also be programmed to support 16 bit SDRAM.

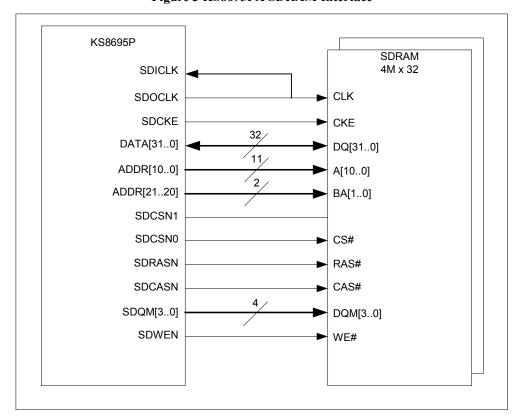


Figure 3 KS8695PX SDRAM Interface

Table 5 KS8695PX SDRAM Signals

KS8695 Signal	SDRAM Signal	Description
SDOCLK	CLK	Clock from KS8695PX to
		SDRAM.
SDICLK	N/A (Feedback from	KS8695PX uses this clock to
	SDOCLK)	register SDRAM data.
DATA[310]	DQ[310]	Bi-directional data bus
ADDR[110]	A[110]	Address bus
ADDR[2120]	BA[10]	Bank Address Inputs
SDCSN0	CS# (Chip 0)	SDRAM chip select (active low)
SDCSN1	CS# (Chip1)	SDRAM chip select (active low)
SDRASN	RAS#	SDRAM row address strobe
		(active low)
SDCASN	CAS#	SDRAM column address strobe
		(active low)
SDQM[30]	DQM[30]	SDRAM input/output mask.
SDWEN	WE#	SDRAM write enable

4.2 Flash

The KS8695PX provides a glueless interface to flash memory as shown in Figure 4. The KS8695PX Demo Board supports 1 flash memory chip either in a socket or mounted directly. The socketed chip makes for easier development. The layout supports either a 2Mx8 or 4Mx8 bit flash chip. The flash memory occupies external static memory bank 0. The KS8695PX flash data bus width is programmable for 8, 16, or 32 bits. The system addressing is determined by the WLED[1:0]/B0SIZE[1:0] inputs. The KS8695PX will automatically adjust the system addressing for byte wide, half word wide (16 bit), or word wide (32 bit) flash configurations. B0SIZE[1:0] is hard coded to "01" for 8 bit flash on the KS8695PX Demo Board.

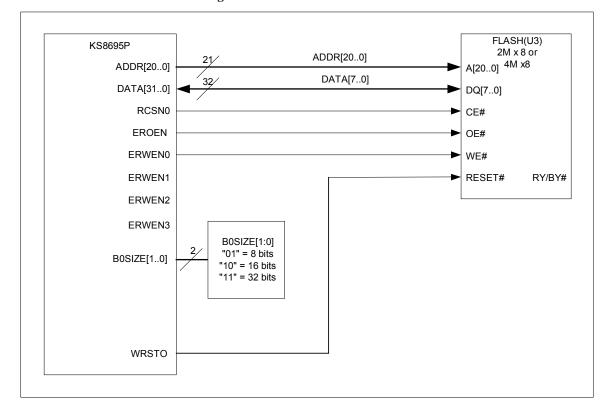


Figure 4 KS8695PX Flash Interface

4.3 Mini-PCI Interface

The KS8695PX Reference Board provides one miniPCI socket to allow testing of 802.11 g/b/a combo gateway applications, as well as a multitude of other miniPCI applications. In total, the KS8695PX can support 3 external PCI masters, and provides a glueless interface for Cardbus and standard PCI as well as miniPCI. The KS8695PX PCI interface supports 33 MHz and is compliant with PCI Local Bus Specification 2.1. The KS8695PX Demo Board miniPCI interface is shown below.

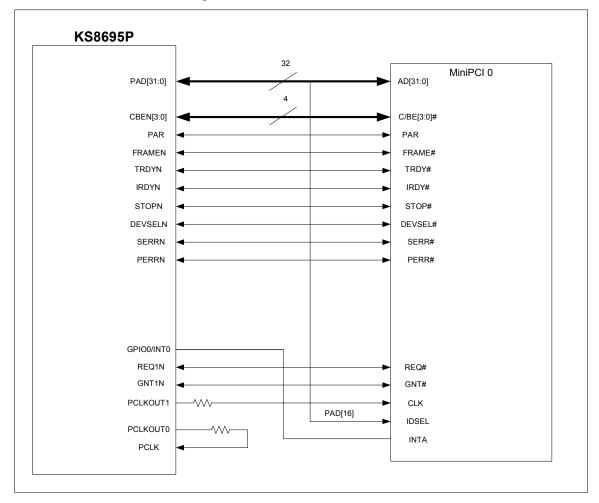


Figure 5 KS8695PX MiniPCI Interface

The miniPCI interface on the reference board supports only 3.3V cards, but power is provided to the 5.0V pins on the miniPCI connector. There are two general purpose LED's provided on pins 11 and 12 of the connector.

The KS8695PX will work with most wireless LAN chipset provider miniPCI solutions.

4.4 External Interfaces

4.4.1 WAN Interface

The WAN interface on the KS8695PX is connected to a single transformer with a 50 ohm differential termination on the transmit side. The line side of the transformer will be connected to pins 3 (TX+) and 6 (TX-) on the RJ-45 connector. With additional circuitry, the WAN interface can also support 100 Base FX and interface with fiber optic modules.

4.4.2 LAN Interfaces

The LAN interfaces on the KS8695PX are connected to a quad transformer with a 50 ohm differential termination on the transmit side for each port. The line side of the transformer is connected to pins 3 (TX+) and 6 (TX-) on the RJ-45 connectors for LAN ports 1-4. With additional circuitry, the LAN1 interface can also support 100 Base FX and interface with fiber optic modules.

4.4.3 **UART**

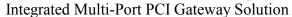
The KS8695PX provides a high speed UART interface. The UART supports up to 120 kbps. The UART interface is a male DB9 connector used for dial-up back up or a console port.

Connector	KS8695PX Signal Name	KS8695PX	KS8695PX Signal Description
Pin No.		I/O	
1	UDCDN	I	UART Data Carrier Detect
2	URXD	I	UART Receive Data
3	UTXD	O	UART Transmit Data
4	UDTRN	O	Data Terminal Ready (active low)
5	N/A	N/A	Ground
6	UDSRN	I	UART Data Set Ready
7	URTSN	О	UART Request To Send
8	UCTSN	I	Clear To Send
9	URIN	I	Ring Indicator

4.4.4 Multi-ICE/JTAG Connector

The KS8695PX JTAG interface (JP4) is a standard 20 pin connector for the Multi-ICE. This connector can be used to download code to flash, and for software development and debugging purposes.

Pin No.	Signal
1	3.3V
2	3.3V
3	NTRST
4	GND
5	TDI
6	GND
7	TMS
8	GND
9	TCK
10	GND
11	RTCK
12	GND
13	TDO
14	GND
15	SRST
16	GND
17	DBGRQ
18	GND
19	DBGACK
20	GND


The DBGRQ and DBACK signals are not be supported on the KS8695PX Demo Board.

4.4.5 LEDs

The KS8695PX provides 2 LED's per LAN or WAN port. These LED indicators are fully programmable. The KS8695PX Demo Board also offers a 3rd LED per port using GPIO pins. The GPIO pins can be programmed as LED indicators with the proper software. Please see the KS8695PX Register Description for more information on programming the LED indicators. The KS8695PX Demo Board features a power LED so that the user may easily determine if the board is on.

- 1. Power LED (D9)
- 2. WAN LEDs (D4)
- 3. LAN Port 1 LEDs (D5)
- 4. LAN Port 2 LEDs (D6)
- 5. LAN Port 3 LEDs (D7)
- 6. LAN Port 4 LEDs (D8)

CENTAUR KS8695PX Demo Board Description

4.4.6 **GPIO**

The KS8695PX features 16 general purpose I/O pins (GPIO). These pins can be use for external controls, or inputs for use by the KS8695PX. For example, GPIO[7:3] are used to add a 3rd LED per port. GPIO[11:8] are connected to JP5 and can be used to emulate an SPI interface for peripheral components.

4.5 Power and Ground

Voltage to the Demo Board is supplied through a 5.0 V DC power jack. The dc power is then translated down to the voltage levels required with Micrel voltage regulators. These voltage regulators were chosen for stability in evaluation and testing. A mass production design can use low cost voltage regulators to supply the KS8695PX. The KS8695PX has the option to use a switching regulator (MIC2193, U10), or an LDO regulator (MIC29300-3.3BT, U11). Note that both the switching regulator and the LDO should not be populated on the board at the same time.

Table 6 Voltage Test Points

Voltages	Test Points
V1.8A (Analog RX)	TP1
V1.8 (Digital Core)	TP2
V3.3A (Analog TX)	TP3
V3.3D (KS8695PX digital I/O)	TP4
GND	TP5, TP6, TP7, TP8