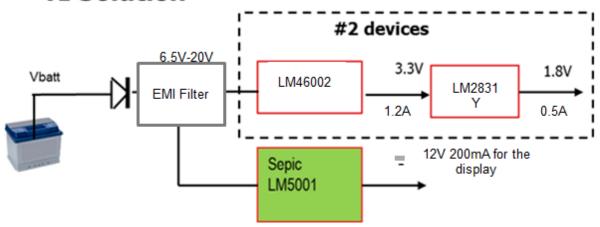


Test Data For PMP9487 09/13/2014

Contents

2

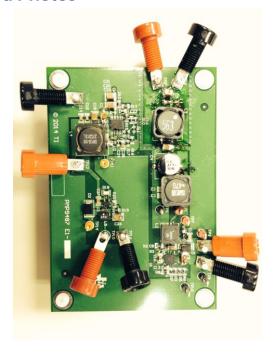
1.	Design Specifications	3
2.	Circuit Description and PCB details	3
3.	PMP9487 Board Photos	4
4.	Thermal Data	5
5.	Efficiency	6
	5.1 Efficiency Chart – Input Voltage Vs Efficiency with all output fully Loaded	6
	5.2 Efficiency Chart – 3.3Vout Efficiency Vs Load Current	6
	5.3 Efficiency Chart – 12Vout Efficiency Vs Load Current	7
	5.3 Efficiency Data	7
6.	Waveforms	11
	6.1 Load Transient Response	11
	6.2 Startup	17
	6.3 Output Voltage Ripple and Switch Node Voltage	23
7.	Frequency Response for SEPIC 12V output	29
ρ	Conducted Emissions	30

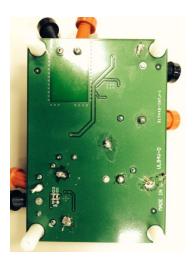

1. Design Specifications

Vin Minimum	6.5VDC
Vin Maximum	20VDC
Vout1	12VDC
lout 1	0.200A
Vout2	3.3VDC
lout 2	1.30A
Vout3	1.8VDC
lout 3	0.500A
Approximate Switching Frequency	500KHz Approx(all the converters)

2. Circuit Description and PCB details

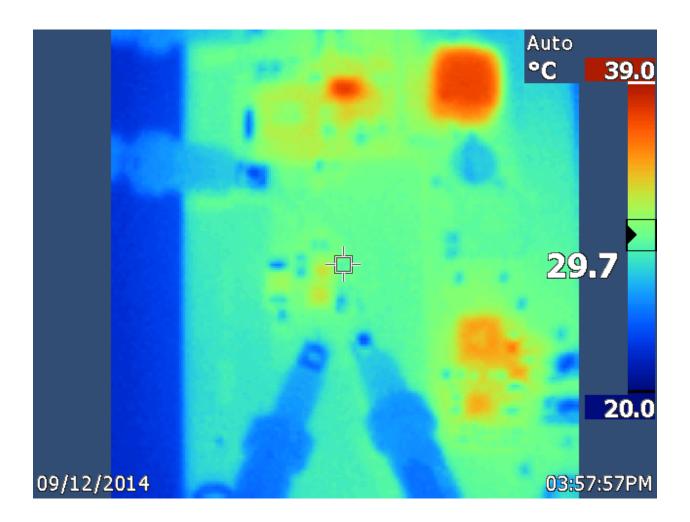
PMP9487 is a conducted EMI optimized (CISPR 25)8W SEPIC Converter for Wide Range Vin automotive Infotainment Cluster application using the LM5001 regulator IC(Used as SEPIC), LM46002(used as Buck) and LM2831Y regulator IC(used as Buck). The design accepts an input voltage of 6.5Vin to 20Vin and provides the outputs of 12V@250mA, 3.3V @ 1.2A and 1.8V @ 500mA. It features a small size and is an inexpensive and more efficient solution to using boost converters and linear regulators.


TI Solution


The Board dimension of PMP9487 PCB is 2750mil * 4000mil. Four layer PCB was used for the design.

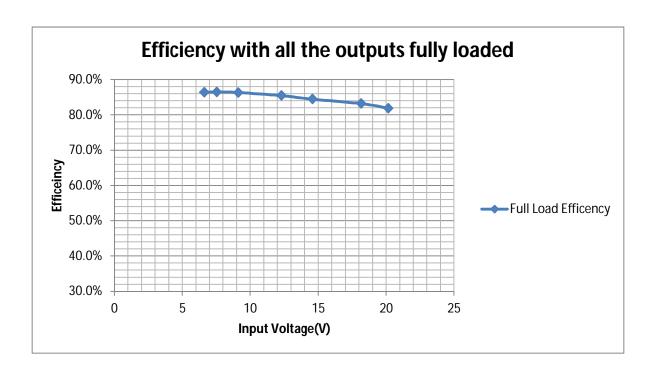
3. PMP9487 Board Photos

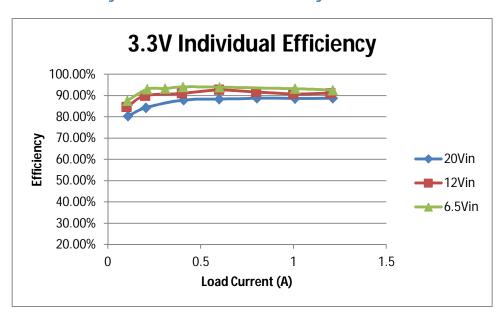
Board Photo (Top)



Board Photo (Bottom)

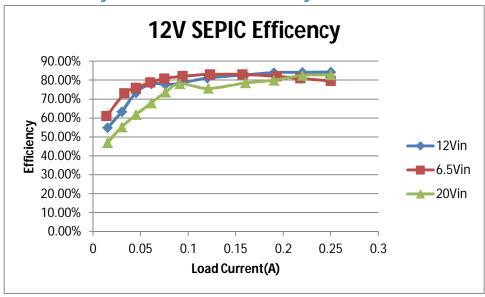
4. Thermal Data


IR thermal image taken at steady state with 14Vin and all the outputs at full load (no airflow)



5. Efficiency

5.1 Efficiency Chart - Input Voltage Vs Efficiency with all output fully Loaded



5.2 Efficiency Chart – 3.3 Vout Efficiency Vs Load Current

5.3 Efficiency Chart - 12Vout Efficiency Vs Load Current

5.3 Efficiency Data

Efficiency of total System Vs Input Voltage

Vin (V)	lin (A)	Vout1 (V)	lout 1(A)	Vout2 (V)	lout 2(A)	Vout3 (V)	lout 3(A)	Pin (W)	Pout (W)	Efficiency (%)
6.6	1.277	3.338	1.199	1.801	0.5	11.905	0.2	8.4282	7.283762	86.4%
7.54	1.116	3.338	1.199	1.801	0.5	11.905	0.2	8.41464	7.283762	86.6%
9.1063	0.926	3.338	1.199	1.801	0.5	11.905	0.2	8.432434	7.283762	86.4%
12.293	0.693	3.338	1.199	1.801	0.5	11.905	0.2	8.519049	7.283762	85.5%
14.564	0.592	3.338	1.199	1.801	0.5	11.905	0.2	8.621888	7.283762	84.5%
18.154	0.482	3.338	1.199	1.801	0.5	11.905	0.2	8.750228	7.283762	83.2%
20.158	0.441	3.338	1.199	1.801	0.5	11.905	0.2	8.889678	7.283762	81.9%

Efficiency of 3.3V Vs Load Current

Vin(V)	lin(A)	Vout1(V)	lout1(A)	Pin(W)	Pout	Efficiency
12.244	0.359	3.339	1.2	4.395596	4.0068	91.15%
12.293	0.299	3.34	1	3.675607	3.34	90.87%
12.345	0.236	3.34	0.8	2.91342	2.672	91.71%
12.294	0.176	3.3423	0.6	2.163744	2.00538	92.68%
12.442	0.118	3.343	0.4	1.468156	1.3372	91.08%
12.184	0.061	3.343	0.2	0.743224	0.6686	89.96%
12.352	0.032	3.343	0.1	0.395264	0.3343	84.58%

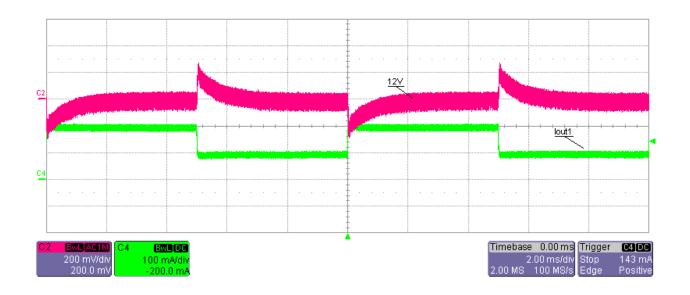
Vin(V)	lin(A)	Vout1(V)	lout1(A)	Pin(W)	Pout	Efficiency
6.692	0.0598	3.3426	0.105	0.400182	0.350973	87.70%
6.8	0.112	3.343	0.212	0.7616	0.708716	93.06%
6.8079	0.162	3.3428	0.308	1.10288	1.029582	93.35%
6.766	0.212	3.3428	0.404	1.434392	1.350491	94.15%
6.6787	0.32	3.3427	0.601	2.137184	2.008963	94.00%
6.4837	0.557	3.3422	1.008	3.611421	3.368938	93.29%
6.3775	0.685	3.3418	1.211	4.368588	4.04692	92.64%

Vin(V)	lin(A)	Vout1(V)	lout1(A)	Pin(W)	Pout	Efficiency
20.352	0.224	3.3409	1.212	4.558848	4.049171	88.82%
20.384	0.186	3.3411	1.007	3.791424	3.364488	88.74%
20.416	0.148	3.3419	0.803	3.021568	2.683546	88.81%
20.447	0.111	3.3422	0.6	2.269617	2.00532	88.35%
20.085	0.077	3.342	0.407	1.546545	1.360194	87.95%
20.301	0.04	3.3428	0.205	0.81204	0.685274	84.39%
20.409	0.022	3.344	0.108	0.448998	0.361152	80.44%

Efficiency of 12V Vs Load Current

Vin(V)	lin(A)	lout2(A)	Vout2(V)	Pin(W)	Pout(W)	Efficiency
12.05	0.027	0.015	11.908	0.32535	0.17862	54.90%
12	0.047	0.03	11.908	0.564	0.35724	63.34%
11.96	0.061	0.045	11.908	0.72956	0.53586	73.45%
11.92	0.078	0.061	11.908	0.92976	0.726388	78.13%
11.87	0.098	0.076	11.908	1.16326	0.905008	77.80%
11.83	0.118	0.092	11.908	1.39594	1.095536	78.48%
12.06	0.146	0.12	11.908	1.76076	1.42896	81.16%
12.04	0.191	0.16	11.908	2.29964	1.90528	82.85%
12.02	0.224	0.19	11.908	2.69248	2.26252	84.03%
12.01	0.259	0.22	11.908	3.11059	2.61976	84.22%
12	0.294	0.25	11.908	3.528	2.977	84.38%

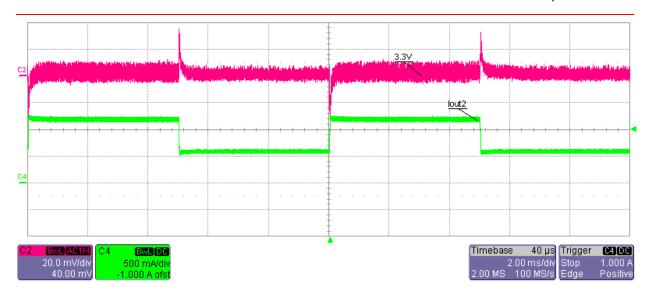
Vin(V)	lin(A)	lout2(A)	Vout2(V)	Pin(W)	Pout(W)	Efficiency
6.66	0.041	0.014	11.908	0.27306	0.166712	61.05%
6.56	0.082	0.033	11.908	0.53792	0.392964	73.05%
6.72	0.105	0.045	11.908	0.7056	0.53586	75.94%
6.71	0.135	0.06	11.908	0.90585	0.71448	78.87%
6.69	0.165	0.075	11.908	1.10385	0.8931	80.91%
6.68	0.204	0.094	11.908	1.36272	1.119352	82.14%
6.65	0.265	0.123	11.908	1.76225	1.464684	83.11%
6.62	0.34	0.157	11.908	2.2508	1.869556	83.06%
6.59	0.425	0.193	11.908	2.80075	2.298244	82.06%
6.57	0.488	0.218	11.908	3.20616	2.595944	80.97%
6.53	0.572	0.25	11.908	3.73516	2.977	79.70%



Vin(V)	lin(A)	lout2(A)	Vout2(V)	Pin(W)	Pout(W)	Efficiency
20.02	0.019	0.015	11.908	0.38038	0.17862	46.96%
20.19	0.032	0.03	11.908	0.64608	0.35724	55.29%
20.16	0.043	0.045	11.908	0.86688	0.53586	61.81%
20.14	0.053	0.061	11.908	1.06742	0.726388	68.05%
20.12	0.061	0.076	11.908	1.22732	0.905008	73.74%
20.09	0.069	0.091	11.908	1.38621	1.083628	78.17%
20.03	0.095	0.121	11.908	1.90285	1.440868	75.72%
20.21	0.12	0.16	11.908	2.4252	1.90528	78.56%
20.2	0.14	0.19	11.908	2.828	2.26252	80.00%
20.2	0.157	0.22	11.908	3.1714	2.61976	82.61%
20.19	0.178	0.25	11.908	3.59382	2.977	82.84%

6. Waveforms

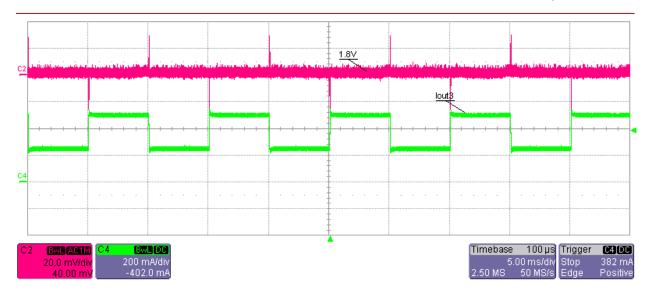
6.1 Load Transient Response



Load Transient Response at 6.5Vin and 50%-to-100% Load Step on 12V Output Vout1(Full Load were connected to all other outputs)

Ch2 – Vout1 (AC coupled)

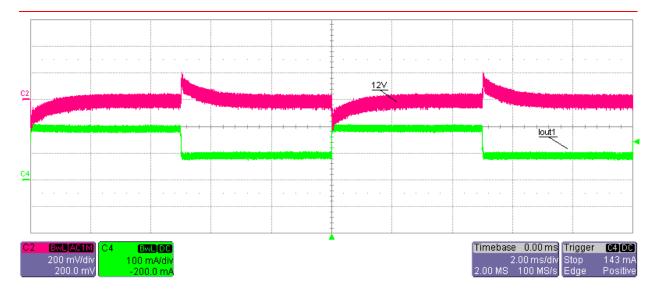
Ch4- lout 1



Load Transient Response at 6.5Vin and 50%-to-100% Load Step on 3.3V Output Vout2 (Full Load were connected to all other outputs)

Ch2 – Vout2 (AC coupled)

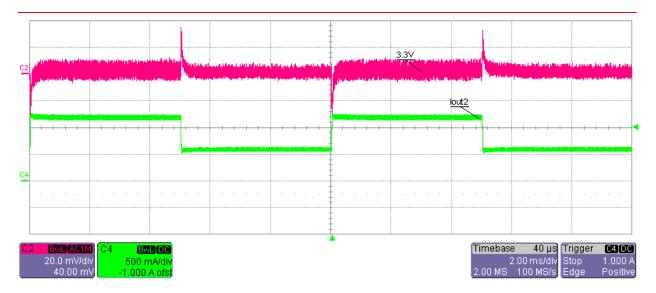
Ch4- lout 2



Load Transient Response at 6.5Vin and 50%-to-100% Load Step on 1.8V Output Vout3(Full Load were connected to all other outputs)

Ch2 – Vout3 (AC coupled)

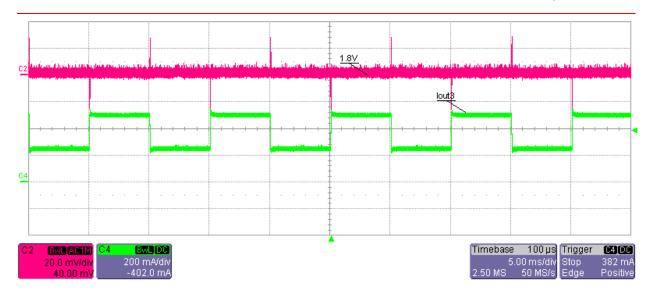
Ch4- lout 3



Load Transient Response at 12Vin and 50%-to-100% Load Step on 12V Output Vout1(Full Load were connected to all other outputs)

Ch2 – Vout1 (AC coupled)

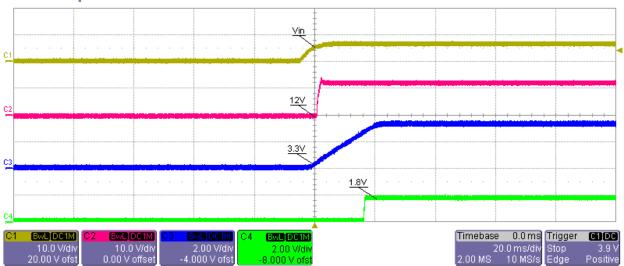
Ch4- lout 1



Load Transient Response at 12Vin and 50%-to-100% Load Step on 3.3V Output Vout2 (Full Load were connected to all other outputs)

Ch2 - Vout2 (AC coupled)

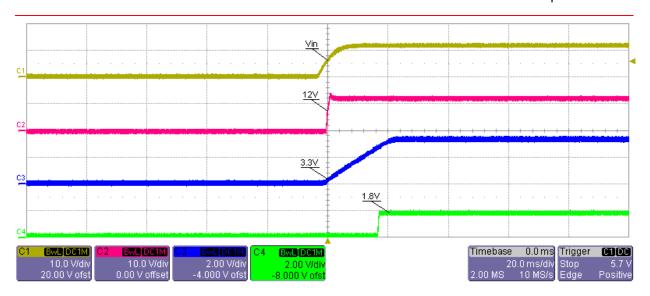
Ch4- lout 2


Load Transient Response at 12Vin and 50%-to-100% Load Step on 1.8V Output Vout3(Full Load were connected to all other outputs)

Ch2 – Vout3 (AC coupled)

Ch4- lout 3

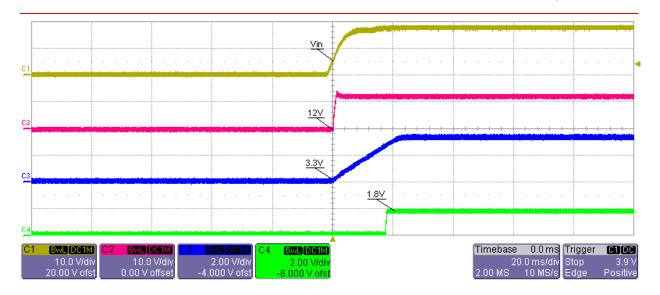
Startup into full Load (all the output was connected to full Load) at 6.5 Vin


Ch1-Vin

Ch2-Vout 1

Ch3-Vout 2

Ch4-Vout3


Startup into full Load (all the output was connected to full Load) at 12 Vin

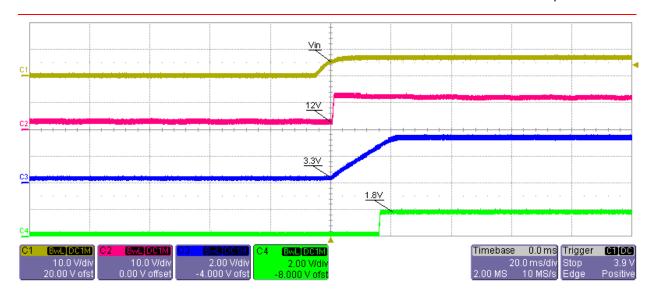
Ch1-Vin

Ch2-Vout 1

Ch3-Vout 2

Ch4-Vout3

Startup into full Load (all the output was connected to full Load) at 20 Vin

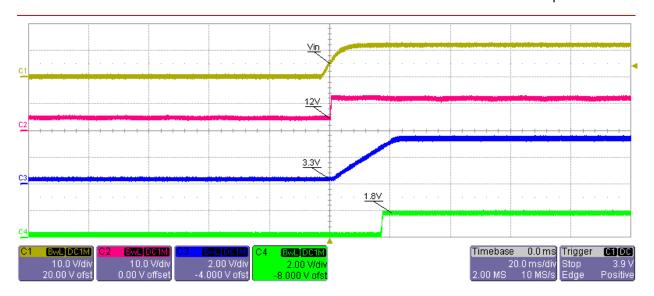

Ch1-Vin

Ch2-Vout 1

Ch3-Vout 2

Ch4-Vout3

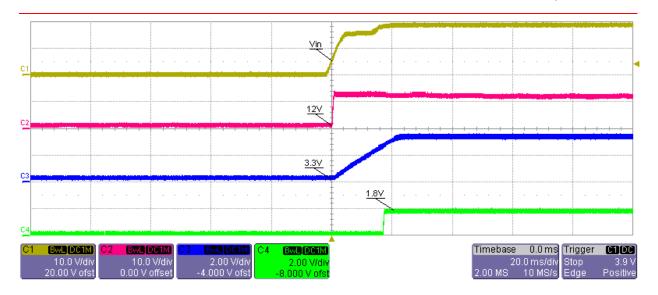
Startup into No Load (all the output was connected to No Load) at 6.5 Vin


Ch1-Vin

Ch2-Vout 1

Ch3-Vout 2

Ch4-Vout3


Startup into No Load (all the output was connected to No Load) at 12 Vin

Ch1-Vin

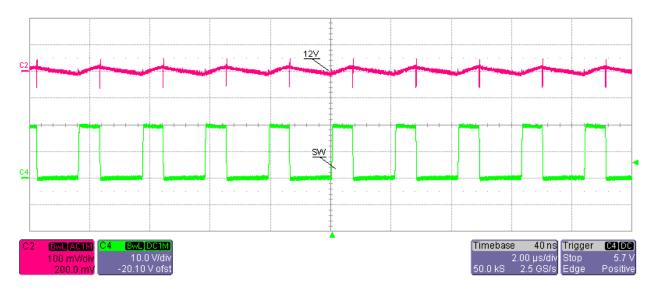
Ch2-Vout 1

Ch3-Vout 2

Ch4-Vout3

Startup into No Load (all the output was connected to No Load) at 20 Vin

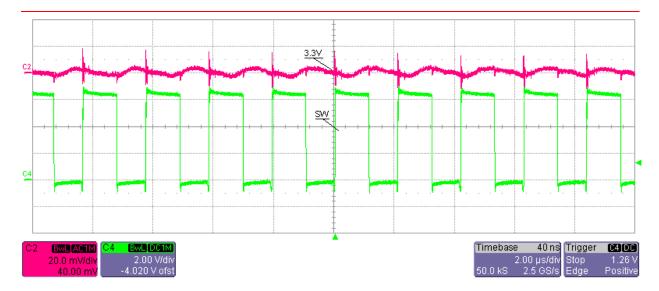
Ch1-Vin


Ch2-Vout 1

Ch3-Vout 2

Ch4-Vout3

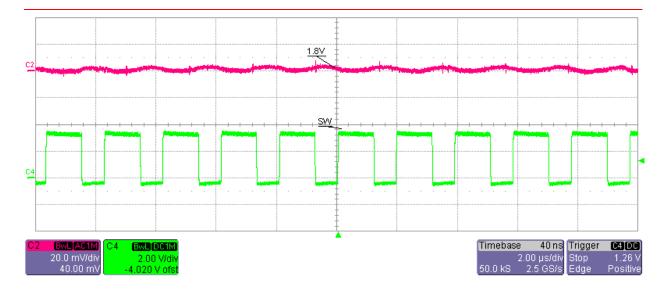
6.3 Output Voltage Ripple and Switch Node Voltage



Switch Node Voltage and Output Voltage Ripple at 6.5 Vin and Full Load on all the outputs (Vripple < 50mVp-p)

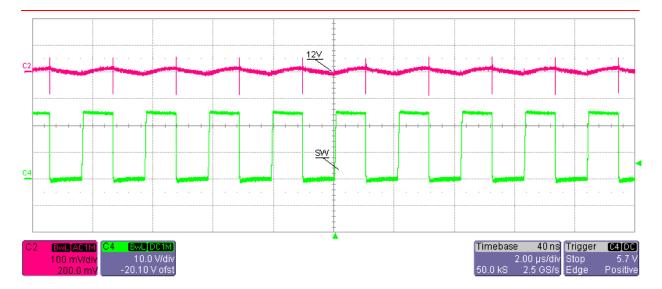
Ch2-Vout1 (AC Coupled)

Ch4-Switching Waveform



Switch Node Voltage and Output Voltage Ripple at 6.5 Vin and Full Load on all the outputs (Vripple < 20mVp-p)

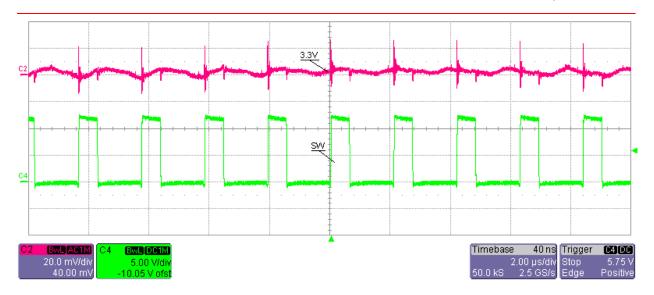
Ch2-Vout2 (AC Coupled)


Ch4-Switching Waveform

Switch Node Voltage and Output Voltage Ripple at 6.5 Vin and Full Load on all the outputs (Vripple < 10mVp-p)

Ch2-Vout3 (AC Coupled)

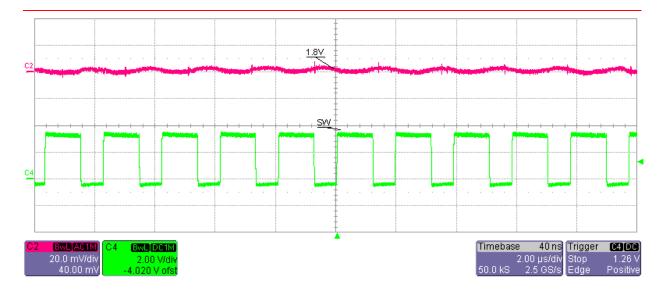
Ch4-Switching Waveform



Switch Node Voltage and Output Voltage Ripple at 12 Vin and Full Load on all the outputs (Vripple < 60mVp-p)

Ch2-Vout1 (AC Coupled)

Ch4-Switching Waveform

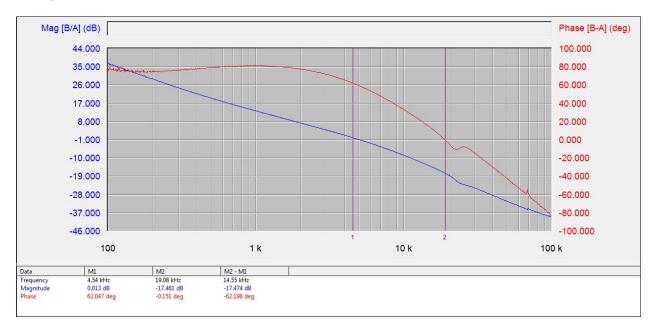


Switch Node Voltage and Output Voltage Ripple at 12 Vin and Full Load on all the outputs (Vripple < 20mVp-p)

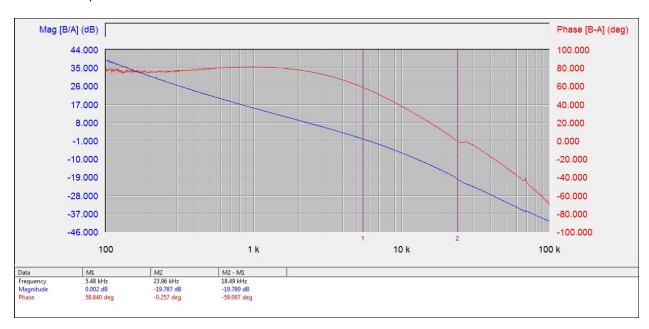
Ch2-Vout2 (AC Coupled)

Ch4-Switching Waveform

Switch Node Voltage and Output Voltage Ripple at 12 Vin and Full Load on all the outputs (Vripple < 10mVp-p)


Ch2-Vout3 (AC Coupled)

Ch4-Switching Waveform



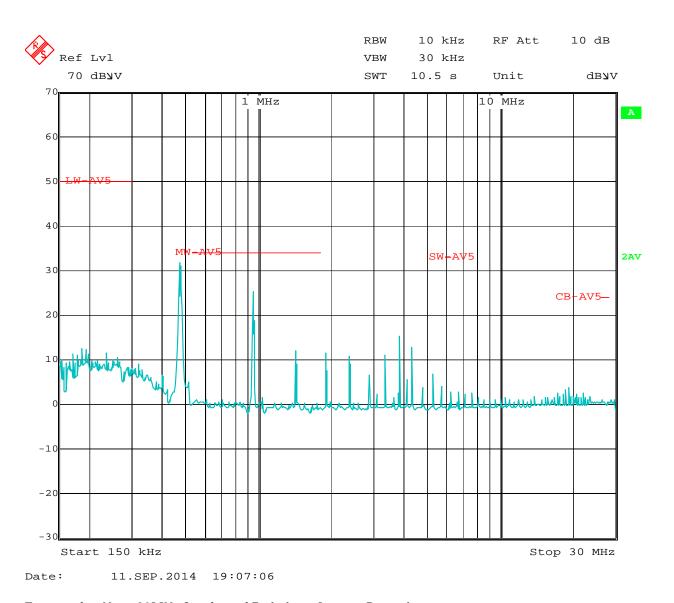
7. Frequency Response for SEPIC 12V output

The output was loaded with 250mA . For gain/phase plot 1 , the input was 9V and for gain/phase plot 2 , the input was 12V

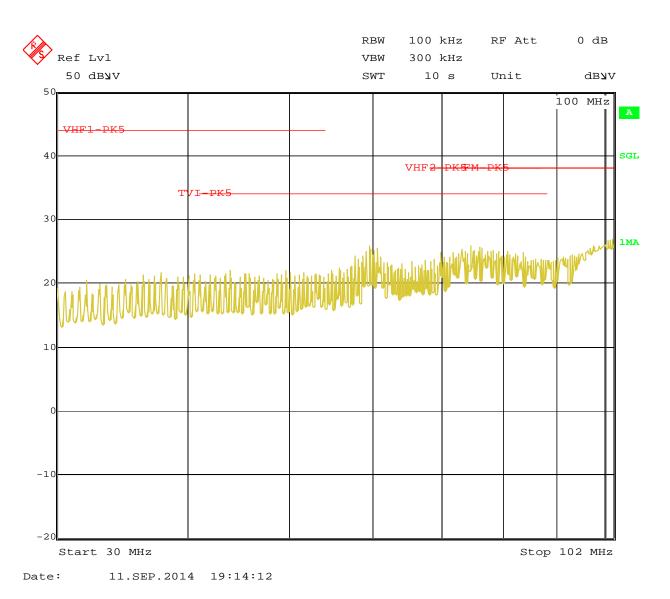
Gain/Phase plot 1 at Vin =9V ,Vout =12V@250mA

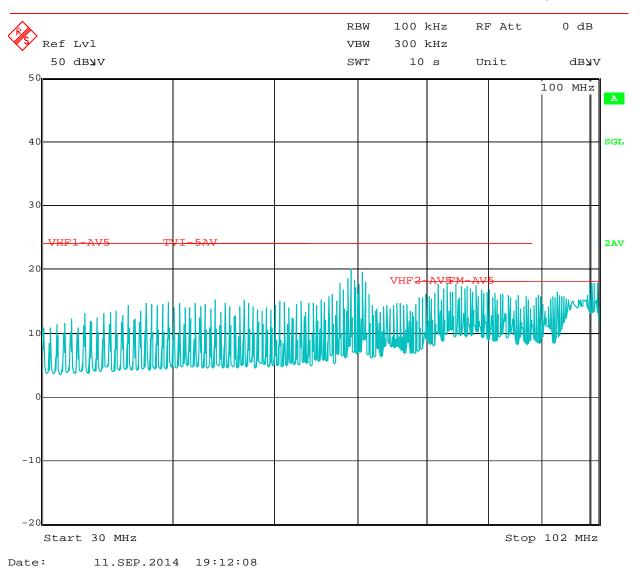
Gain/Phase plot 2 at Vin=12V, Vout =12V@250mA

8. Conducted Emissions


The conducted emissions is tested followed the of CISPR 25 standards. The frequency band examined spans from 150 kHz to 108 MHz covering the AM, FM radio bands, VHF band, and TV band specified in the CISPR 25.

The test results are shown in below Four Figures. The first two Figure show the test result using peak detector and Average detector measurement respectively upto 30MHz, and the last two Figure show the test result using average detector and Peak Detector measurement from 30MHz to 108MHz. The limit lines shown in red are the Class 5 limits for conducted disturbances specified in the CISPR 25; the yellow(Peak Detector measurement) and blue(Average detector measurement) traces is the test result. It can be seen that the power supply operates quietly and the noise is below the stringent Class 5 limits too.


Test result - Upto 30MHz Conducted Emission -Peak Detection


Test result – Upto 30MHz Conducted Emission –AverageDetection

Test result -30MHz to 108MHz Conducted Emission -Peak Detection

Test result –30MHz to 108MHz Conducted Emission –Average Detection

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.