PMP6017 TPS92074 120Vac Single Stage Non-Dimmable 50W LED Driver Reference Design

March, 2014

120Vac Single Stage Non-Dimmable 50W LED Driver Reference Design

1 Introduction

This TPS92074 reference design presents the TPS92074 controller driving a 47V string of LEDs at 1A in a buck configuration. It is a single stage and non-dimmable reference design.

2 Description

This reference design provides a high-brightness LED driver based on the TPS92074. It is designed to operate with an input voltage in the range of 108VAC to 132VAC with a 120 VAC nominal input voltage. This design is set up for a 1A output current with an output voltage of 47. This design offers a power factor and low THD solution to the high power LED lighting applications.

2.1 Typical Applications

This converter design describes an application of the TPS92074 as an LED driver with the specifications listed below. For applications with a different output voltage or current range refer to the TPS92074 datasheet. This reference design is most suitable for high power LED such as streetlight and high bay.

2.2 Features

High power factor: >0.98High efficiency: >0.89

• Low THD: <20%

• Low BOM count: ~34 components

Suitable for high power LED lighting application

3 Electrical Performance Specifications

Table 1: TPS92074 120VacSingle Stage Non-Dimmable Buck Electrical Performance Specifications

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS			
Input Characteristics								
Voltage range	Normal operation	108	120	132	VAC			
Maximum input current	At 120VAC 60Hz input voltage		0.4		Α			
Output Characteristics								
Output voltage, VOUT			47		V			
Output load current, IOUT	Input voltage = 120V 60Hz, Load = 47V LED		1000		mA			
Output current accuracy	Input voltage = 120V 60Hz, Load = 47V LED		< ±2		%			
Output current ripple	Input voltage = 120V 60Hz, Load = 47V LED		<600		mApp			
Output current line regulation	Input voltage 108V to 132V 60Hz, Load = 47V LED		< ±2		%			
Systems Characteristics								
Power Factor	Input voltage = 120V 60Hz, Load = 47V LED		>0.98					
Efficiency	Input voltage = 120V 60Hz, Load = 47V LED		>89		%			
THD	Input voltage = 120V 60Hz, Load = 47V LED		<20		%			

4 Schematic*

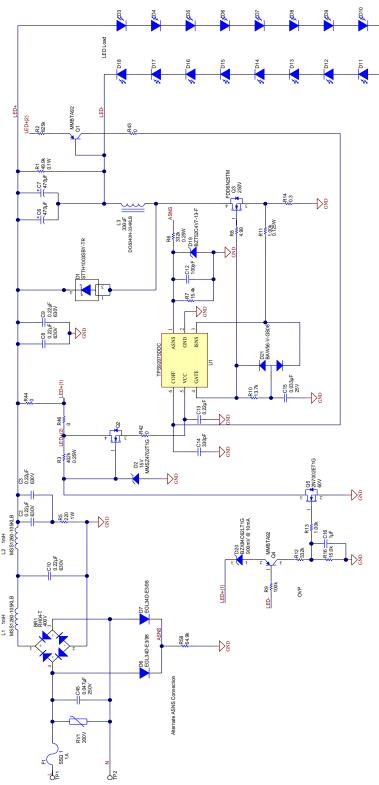


Figure 1: TPS92074 120Vac Single Stage Non-Dimmable 50W LED Driver Schematic

*The schematic may contain optional components. For detail components list and value, please refer to the BOM list on page 12.

5 Performance Data and Typical Characteristic Curves

Figures 2 through 12 and table 2 present typical performance of the TPS92074 120Vac Single Stage Non-Dimmable 50W LED Driver.

5.1 Efficiency

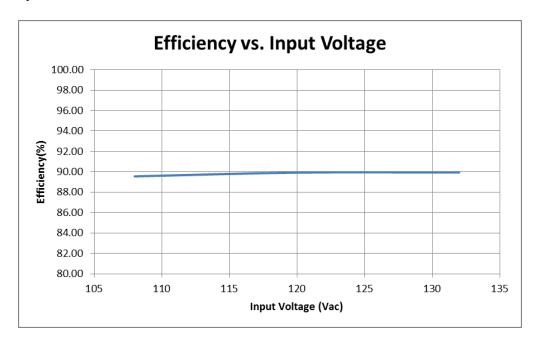


Figure 2: Efficiency with 47V LED stack

5.2 Current Regulation

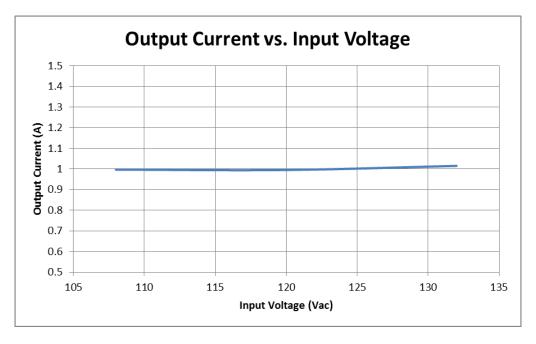


Figure 3: Output Current with 47V LED stack

5.3 Power Factor

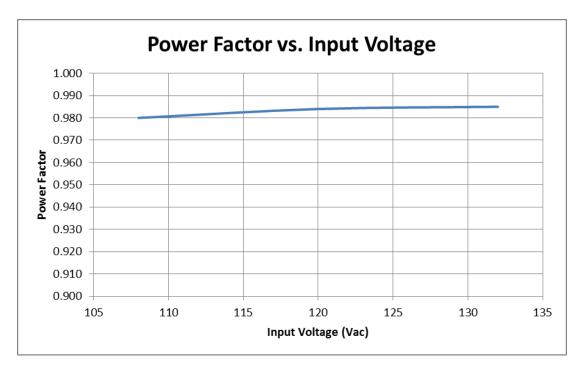


Figure 4: Power Factor 120Vac 60Hz input with 47V LED stack

5.4 THD

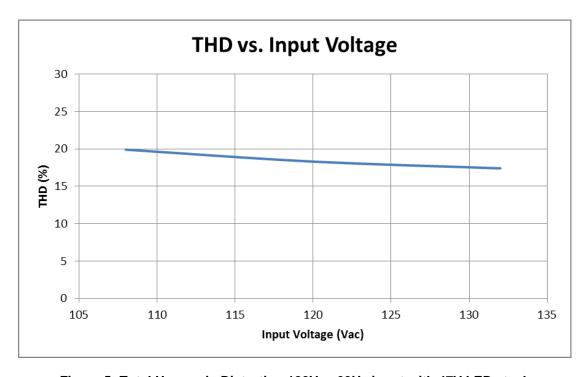


Figure 5: Total Harmonic Distortion 120Vac 60Hz input with 47V LED stack

5.5 Waveforms

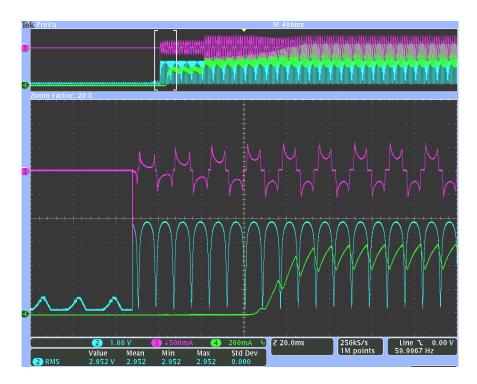


Figure 6: CH2: ASNS, CH3: Input Current, CH4: Output LED Current (Start-Up Ph1 – Line Sampling for PFC lock)

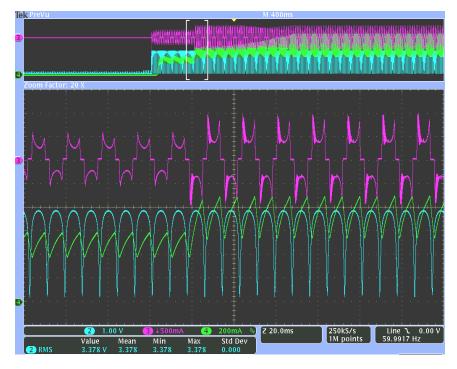


Figure 7: CH2: ASNS, CH3: Input Current, CH4: Output LED Current (Start-Up Ph2 – Line Frequency recognized, begin triangular ramp creation)

Figure 8: CH2: ASNS, CH3: Input Current, CH4: Output LED Current (Start-Up Ph3 – Ramp creation mode nearing completion)

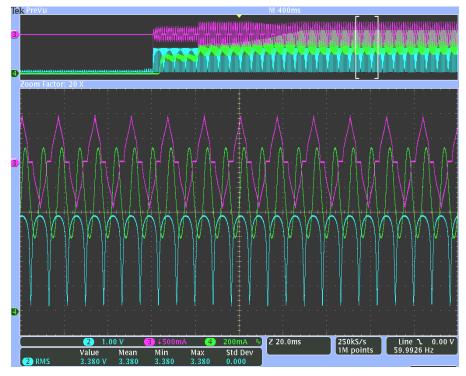


Figure 9: CH2: ASNS, CH3: Input Current, CH4: Output LED Current

(Start-Up, Ph4 – Ramp synchronization is complete, digital control is locked to the line frequency)

Figure 10: CH2: ASNS, CH3: Input Current, CH4: Output LED Current Time to reach 500mA: 100ms (Start-up Delay), 750mA: 425ms, 1A: 1380ms

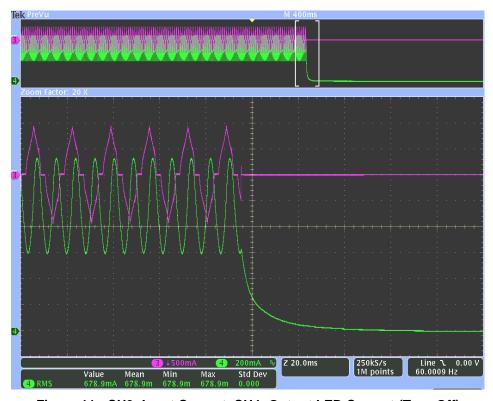


Figure 11: CH3: Input Current, CH4: Output LED Current (Turn Off)

5.6 EMI Performance

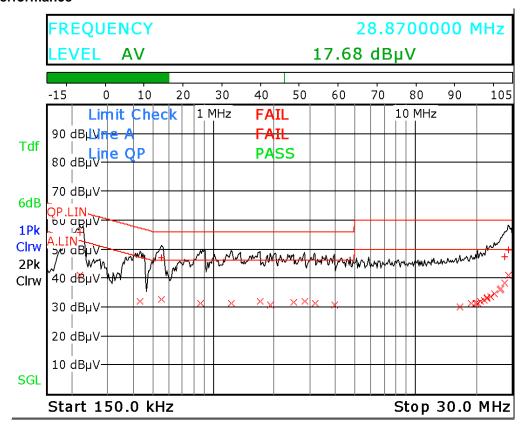


Figure 12: 120VAC Conducted EMI Scan - PEAK with Average and QP Measurements

1 = AV	Hz	dB	dB	1 = AV	Hz	dB	dB
2 = QP	FREQ	Level	Margin	2 = QP	FREQ	Level	Margin
1	2.2E+05	55.9	-6.99478	2	2E+07	31.18	-18.82
2	2.2E+05	40.98	-11.9148	2	2E+07	31.38	-18.62
2	4.3E+05	31.99	-15.1858	2	2.1E+07	31.87	-18.13
1	5.5E+05	47.06	-8.94	2	2.2E+07	32.25	-17.75
2	5.5E+05	32.54	-13.46	2	2.3E+07	33.11	-16.89
2	8.6E+05	31.37	-14.63	2	2.3E+07	33.49	-16.51
2	1.2E+06	31.2	-14.8	2	2.4E+07	33.61	-16.39
2	1.7E+06	32.04	-13.96	2	2.5E+07	34.69	-15.31
2	1.9E+06	30.65	-15.35	2	2.6E+07	36.14	-13.86
2	2.5E+06	31.59	-14.41	2	2.6E+07	36.23	-13.77
2	2.8E+06	31.87	-14.13	1	2.7E+07	47.55	-12.45
2	3.2E+06	31.34	-14.66	2	2.7E+07	38.31	-11.69
2	4.0E+06	30.53	-15.47	1	2.9E+07	49.92	-10.08
2	1.6E+07	30.08	-19.92	2	2.9E+07	40.92	-9.08
2	1.9E+07	31.28	-18.72				

Table 2: Average and QP with listed Margins

TPS92074 120Vac Single Stage Non-Dimmable 50W LED Driver Reference Design PCB layout*

The following figures show the design of the printed circuit board. The PCB design is single sided and is suitable for using on metal-core single sided PCB.

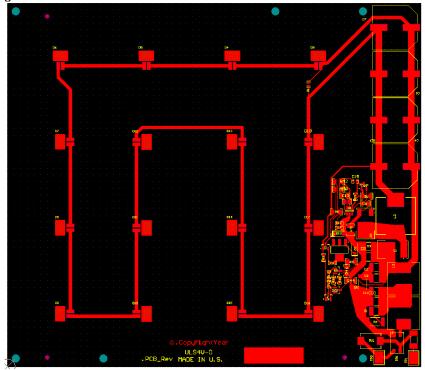


Figure 13: Top Layer and Top Overlay (Top view)

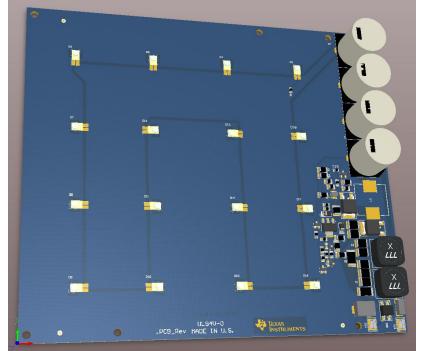


Figure 14: 3D View of PCB

^{*}The layout may contain optional components. For detail components list, please refer to the BOM list on page 12.

Bill of Materials

Ref Designator	QTY	Value	Description	Part Number	Manufacturer
BR1	1	400V	RECT BRIDGE GP 400V 0.5A MINIDIP	RH04-T	DIODES INC (VA)
C1, C2, C3, C8, C9, C10, C11	7	0.22uF	CAP CER 0.22UF 630V 20% X7T 1812	CGA8M1X7T2J224M200KC	TDK CORPORATION
C6, C7	2	470uF	CAP ALUM 470UF 63V 20% SMD	EEV-FK1J471M	PANASONIC
C12	1		CAP CER 10000PF 16V 10% X7R 0603	GRM188R71C103KA01D	MURATA ELECTRONICS (VA)
C13	1		CAP CER 0.22UF 25V 10% X7R 0603	GRM188R71E224KA88D	MURATA ELECTRONICS (VA)
C14	1	330pF	CAP CER 330PF 50V 10% X7R 0603	GRM188R71H331KA01D	MURATA ELECTRONICS (VA)
C15	1		CAP CER 0.033UF 25V 20% X7R 0603	C1608X7R1E333M	TDK CORPORATION (VA)
C16	1	1uF	CAP CER 1UF 25V X7R 10% 0603	GRM188R71E105KA12D	MURATA ELECTRONICS (VA)
D1	1	400V	DIODE ULT FAST 400V 3A SMC	STTH3R04S	STMICROELECTRONICS
D2	1	15V	DIODE ZENER 15V 500MW SOD123	MMSZ4702T1G	ON SEMICONDUCTOR (VA)
D19	1	4.7V	DIODE ZENER 4.7V 500MW SOD123	BZT52C4V7-13-F	DIODES INC
D20	1	62V	DIODE ZENER 62V 225MW SOT23-3	BZX84C62LT1G	ON SEMICONDUCTOR (VA)
D21	1	70V	DIODE ARRAY 70V 250MA SOT23	BAW56-V-GS08	VISHAY
F1	1	1A	FUSE 1A 125V 6125 FAST SSQ	SSQ 1	BEL FUSE INC
L1, L2	2	1mH	INDUCTOR 1MH 500MA SMD	SRR1208-102KL	BOURNS INC
L3	1	270uH	INDUCTOR POWER 270UH 1.6A SMD	7447709271	WURTH ELECTRONICS INC
Q1, Q4	2	300V	TRANSISTOR, PNP, 300V, 0.2A, SOT-23	MMBTA92	FAIRCHILD
Q2	1	250V	MOSFET N-CH 250V 790MA SOT223	IRFL214TRPBF	VISHAY SILICONIX
Q3	1	250V	MOSFET N-CH 250V 4.4A DPAK	FDD6N25TM	FAIRCHILD
Q5	1	60V	MOSFET N-CH 60V 260MA SOT-23	2N7002ET1G	ON SEMICONDUCTOR (VA)
R1	1	49.9k	RES 49.9K OHM 1/10W 1% 0603 SMD	CRCW060349K9FKEA	VISHAYDALE
R2	1	825	RES 825 OHM 1/10W 1% 0603 SMD	CRCW0603825RFKEA	VISHAY DALE
R3	1	402k	RES 402K OHM 1/4W 1% 1206 SMD	CRCW1206402KFKEA	VISHAY DALE
R4, R5	2	220	RES 220 OHM 1W 5% 2512 SMD	CRCW2512220RJNEG	VISHAYDALE
R6	1	332k	RES 332K OHM 1/4W 1% 1206 SMD	CRCW1206332KFKEA	VISHAY DALE
R7	1	33.2k	RES 33.2K OHM 1/10W 1% 0603 SMD	CRCW060333K2FKEA	VISHAY DALE
R8	1	4.99	RES 4.99 OHM 1/10W 1% 0603 SMD	CRCW06034R99FKEA	VISHAY DALE
R9, R10	2	100k	RES 100K OHM 1/10W 1% 0603 SMD	CRCW0603100KFKEA	VISHAYDALE
R11	1	1k	RES 1.00K OHM 1/8W 1% 0805 SMD	CRCW08051K00FKEA	VISHAYDALE
R12	1	332k	RES 332K OHM 1/10W 1% 0603 SMD	CRCW0603332KFKEA	VISHAY DALE
R13	1	1k	RES 1.00K OHM 1/10W 1% 0603 SMD	CRCW06031K00FKEA	VISHAYDALE
R14, R15	2	0.24	RES 0.24 OHM 1/2W 1% 1210 SMD	MCR25JZHFLR240	ROHM
R16	1	15k	RES 15.0K OHM 1/10W 1% 0603 SMD	CRCW060315K0FKEA	VISHAY DALE
U1	1		Non-Isolated, Buck PFC LED Driver with Digital Ref Controller	TPS92074DDCR/NOPB	TEXAS INSTRUMENTS

EVALUATION BOARD/KIT/MODULE (REF DESIGN) WARNINGS, RESTRICTIONS AND DISCLAIMER

For Feasibility Evaluation Only, in Laboratory/Development Environments. The REF DESIGN is not a complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory / development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical / mechanical components, systems and subsystems. It should not be used as all or part of a production unit.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the REF DESIGN for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the REF DESIGN. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the REF DESIGN and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. Since the REF DESIGN is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the REF DESIGN will not result in any property damage, injury or death, even if the REF DESIGN should fail to perform as described or expected.

Certain Instructions. Exceeding the specified REF DESIGN ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the REF DESIGN and/or interface electronics. Please consult the REF DESIGN User's Guide prior to connecting any load to the REF DESIGN output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output ranges are maintained at nominal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be indentified using the REF DESIGN schematic located in the REF DESIGN User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the REF DESIGN that is not in accordance with the terms of this agreement. This obligation shall apply whether Claims arise under the law of tort or contract or any other legal theory, and even if the REF DESIGN fails to perform as described or expected.

<u>Safety-Critical or Life-Critical Applications</u>. If you intend to evaluate TI components for possible use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.