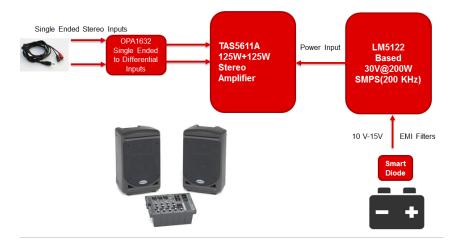


Test Data For PMP10710 08/01/2015

Table of Contents

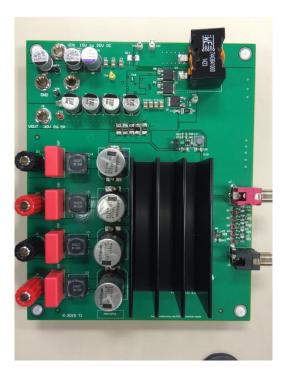
1.	Design Specifications	3
2.	Circuit Description	3
3.	PMP10710 Board Photos	4
4.	Thermal Data	5
5.	Test results – Boost	6
	5.1 Efficiency	6
	5.1.1 Efficiency Chart	6
	5.1.2 Efficiency Data	6
	5.2 Waveforms	9
	5.2.1 Load Transient Response	9
	5.2.2 Startup	12
	5.2.3 Output Voltage Ripple and Switch Node Voltage	18
6.	Audio Power Amplifier's Test Result and switch position	21
	6.1 Switch positions	21
	6.2 Indication LEDS	22
	6.3 BTL: Stereo Waveforms	23
	6.3.1 Input /Output Audio	23
	6.3.2 THD Vs Power: BTL mode	25
	6.3.3 THD Vs Frequency: BTL mode	28


1. Design Specifications

Vin Minimum	10.4V(Start up at 6v and delivers peak power at
	10V)
Vin Maximum	15V
Vin Nominal	12V (Lead Acid Battery)
Vout	30V
lout	6.5A
Switching Frequency(SMPS)	200 KHz
Audio Amplifier Total Power	200W
Audio Amp Output	100W +100 W Stereo(on 4 ohm BTL) or 200W
	Woofer (on 2 ohm PBTL)
Audio Amp Input	Stereo Inputs. Processing for Single input to
	differential is made.

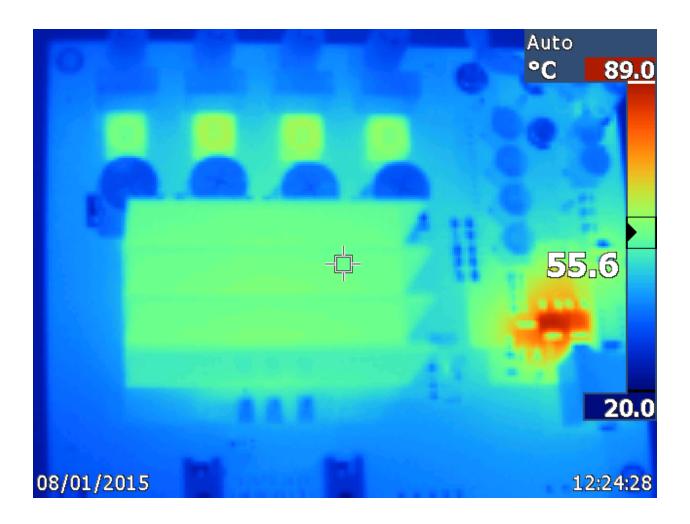
2. Circuit Description

PMP10710 is a 200W design for public announcement audio system which can be used in 100W +100W Stereo or 200W Woofer Applications. The design is broadly divided into four main stages:


- 1. Single-Phase Synchronous Boost Converter using the LM5122 controller IC. The design accepts an input voltage of 10V to 15 VIN (12 VIN Nominal) and provides an output of 30V capable of supplying 6.5A of continuous current to the load.
- 2. 100W + 100W Stereo Audio Amplifier with TAS5611 Class D device.
- 3. Single ended to differential conversion (with active low pass filter) for Stereo inputs using OPA1632 differential amplifier.
- 4. Simple Switcher LM16006 is used for all Aux supply needs.

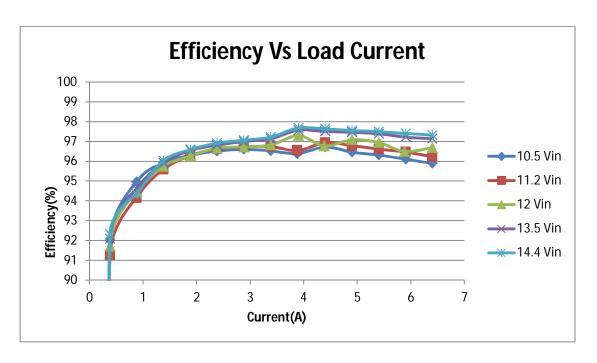
3. PMP10710 Board Photos

Board Dimensions: 6840mil *5555mil


Board Photo (Top)

Board Photo (Bottom)

4. Thermal Data


IR thermal image taken at steady state with 12 Vin and 100W +100W Stereo output

5. Test results - Boost

5.1 Efficiency

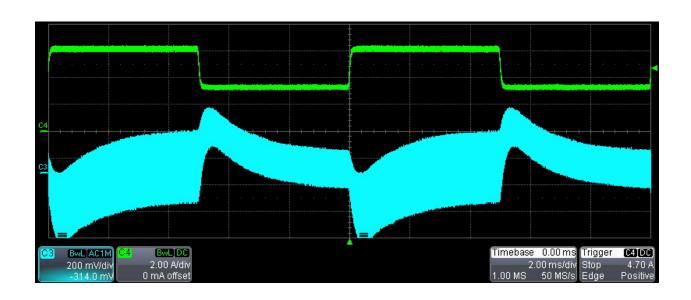
5.1.1 Efficiency Chart

5.1.2 Efficiency Data

Vin(V)	Vin(V) lin(A)		lout(A)	Efficiency(%)
10.503	0.05	30.258	0	0
10.503	1.19	30.259	0.38	91.998
10.503	2.67	30.261	0.88	94.96
10.503	4.145	30.262	1.38	95.927
10.503	5.625	30.263	1.88	96.302
10.503	7.105	30.264	2.38	96.522
10.503 8.59	30.266	2.88	96.614	
10.503	10.09	30.267	3.38	96.534
10.503 11.6		30.269	3.88	96.396
10.503	10.503 13.11		4.4	96.727
10.503 14.64		30.272	4.9	96.468
10.503	16.16	30.274	5.4	96.318
10.503	17.695	30.276	5.9	96.114
10.503	19.24	30.279	6.4	95.897

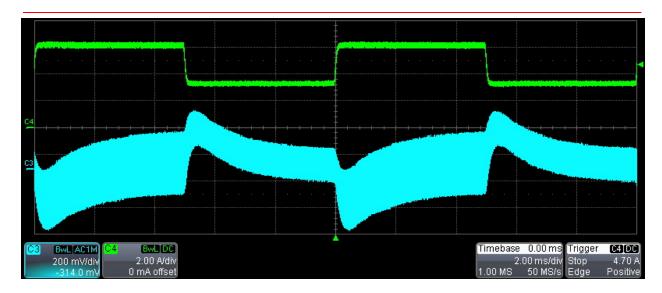
Vin(V) lin(A)		Vout(V)	lout(A)	Efficiency(%)
11.204 0.05		30.269	0	0
11.204	1.125	30.27	0.38	91.258
11.204	2.525	30.271	0.88	94.162
11.204	3.9	30.271	1.38	95.602
11.204	5.275	30.271	1.88	96.292
11.203 6.655		30.272	2.38	96.635
11.204 8.045	30.273	2.88	96.727	
11.203 9.44 11.203 10.86		30.273	3.38	96.753
		30.274	3.88	96.547
11.203 12.265		30.275	4.4	96.947
11.203 13.68		30.276	4.9	96.8
11.203 15.105		30.278	5.4	96.62
11.203	11.203 16.53		5.9	96.469
11.203 17.975		30.281	6.4	96.238

Vin(V)	lin(A)	Vout(V)	lout(A)	Efficiency(%)
12.003	0.05	30.272	0	0
12.003	1.045	30.273	0.38	91.713
12.003	2.35	30.273	0.88	94.445
12.003	3.635	30.273	1.38	95.75
12.003	4.925	30.273	1.88	96.276
12.002	12.002 6.21		2.38	96.669
12.002	7.51	30.274	2.88	96.732
12.002 8.805		30.274	3.38	96.829
12.002 10.11		30.275	3.9	97.307
12.003 11.415		30.276	4.38	96.785
12.003 12.73		30.277	4.9	97.094
12.003 14.05		30.278	5.4	96.952
12.003	12.003 15.37		5.88	96.506
12.002 16.7		30.281	6.4	96.69


Vin(V)	lin(A)	Vout(V)	lout(A)	Efficiency(%)
13.506	0.05	30.274	0	0
13.505	0.925	30.274	0.38	92.091
13.505	2.085	30.274	0.88	94.613
13.506	3.225	30.274	1.38	95.916
13.505	4.365	30.274	1.88	96.549
13.505	5.51	30.274	2.38	96.828
13.505	13.505 6.655		2.88	97.011
13.505	13.505 7.8		3.38	97.143
13.505 8.96		30.275	3.9	97.577
13.505	13.505 10.115		4.4	97.516
13.505	13.505 11.27		4.9	97.471
13.505 12.43		30.277	5.4	97.396
13.505	13.505 13.605		5.9	97.227
13.505 14.77		30.279	6.4	97.151

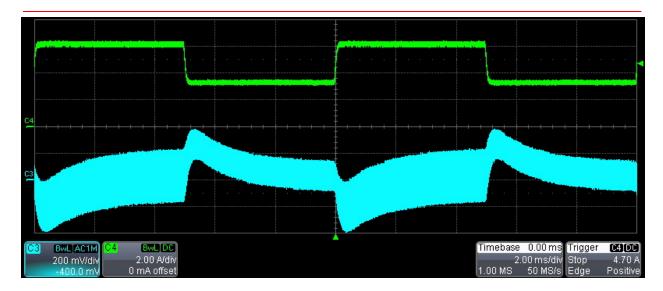
Vin(V)	lin(A)	Vout(V)	lout(A)	Efficiency(%)
14.407	14.407 0.045		0	0
14.406	0.865	30.274	0.38	92.32
14.406	1.96	30.274	0.88	94.352
14.406	3.02	30.274	1.38	96.028
14.406	14.406 4.09		1.88	96.593
14.406 5.16		30.273	2.38	96.926
14.406 6.235		30.274	2.88	97.069
14.406 7.305		30.274	3.38	97.235
14.406 8.39		30.274	3.9	97.685
14.406 9.47		30.275	4.4	97.644
14.406 10.555		30.275	4.9	97.562
14.406 11.64		30.276	5.4	97.498
14.406	14.406 12.73		5.9	97.408
14.406 13.82		30.278	6.4	97.332

5.2 Waveforms


5.2.1 Load Transient Response

Load Transient Response at 10.5 Vin and 50%-to-100% (3.2A-to-6.5A) Load Step

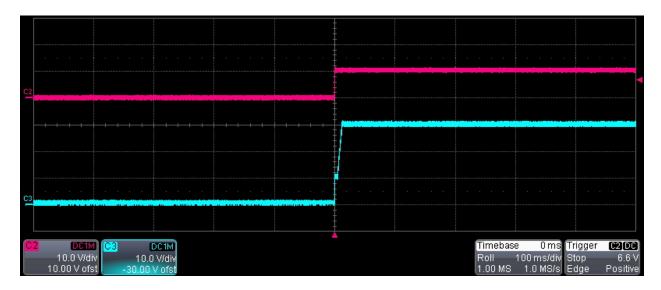
C4- lout


C3- Vout(AC coupled)

Load Transient Response at 12 Vin and 50%-to-100% (3.2A-to-6.5A) Load Step

C4- lout

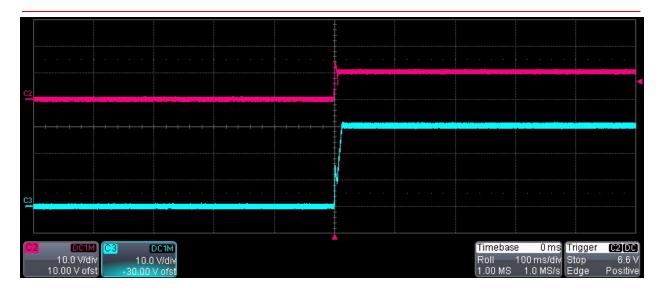
C3- Vout(AC coupled)


Load Transient Response at 14 Vin and 50%-to-100% (3.2A-to-6.5A) Load Step

C4- lout

C3- Vout(AC coupled)

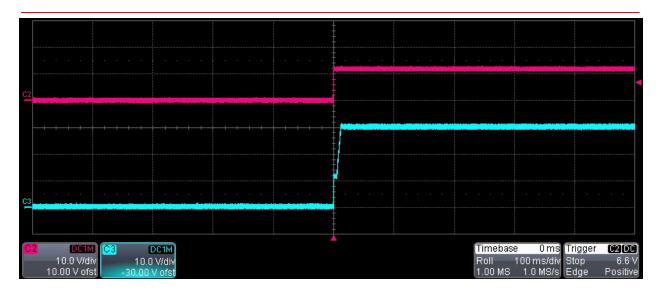
5.2.2 Startup



Startup into No Load at 10 Vin

C3- Vin

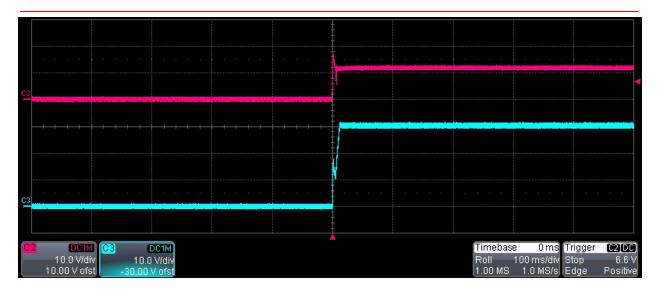
C2-Vout



Startup into Full Load(6.5A) at 10 Vin

C3- Vin

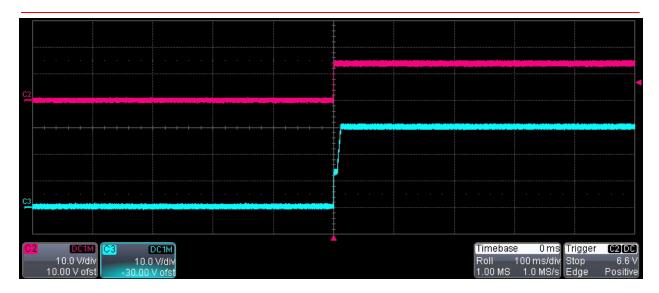
C2-Vout



Startup into No Load at 12 Vin

C3- Vin

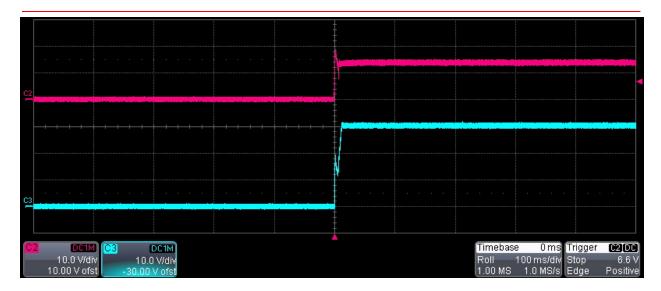
C2-Vout



Startup into Full Load(6.5A) at 12 Vin

C3- Vin

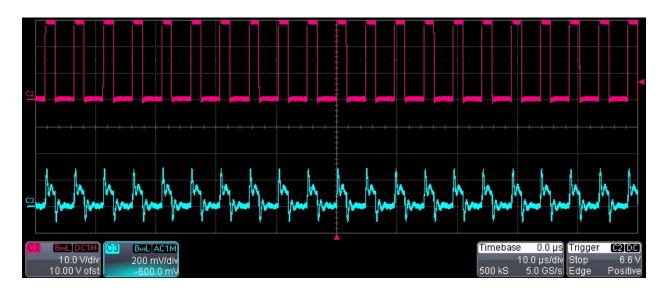
C2-Vout



Startup into No Load at 14 Vin

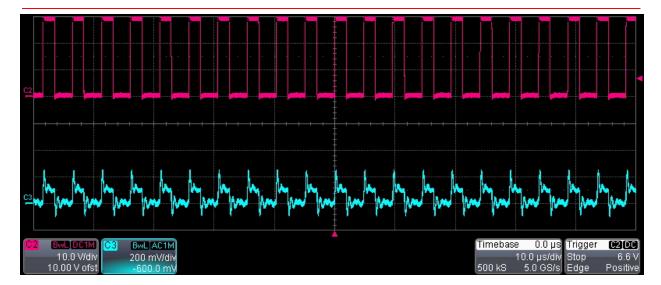
C3- Vin

C2-Vout


Startup into Full Load(6.5A) at 14 Vin

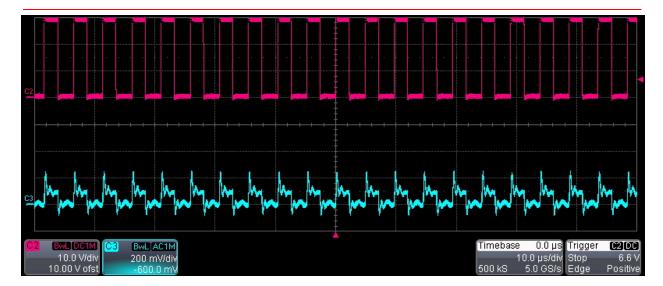
C3- Vin

C2-Vout


5.2.3 Output Voltage Ripple and Switch Node Voltage

Ch2 - Switch Node Voltage

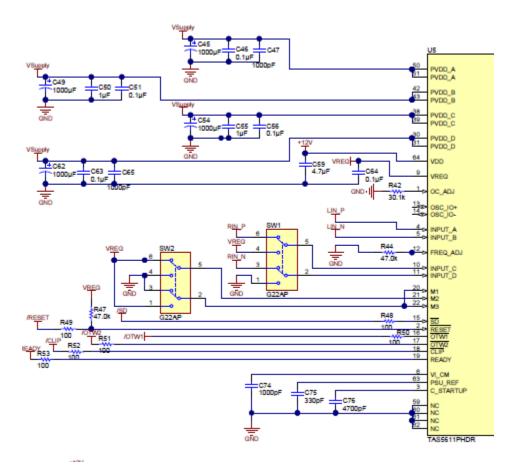
Ch3-Output Voltage Ripple at 10.8 Vin and 6.5A Load



Ch2 - Switch Node Voltage

Ch3-Output Voltage Ripple at 12 Vin and 6.5A Load

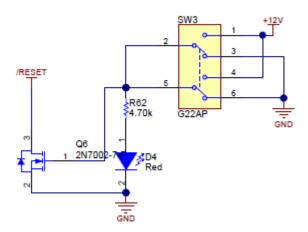
Ch2 - Switch Node Voltage


Ch3-Output Voltage Ripple at 14 Vin and 6.5A Load

6. Audio Power Amplifier's Test Result and switch position

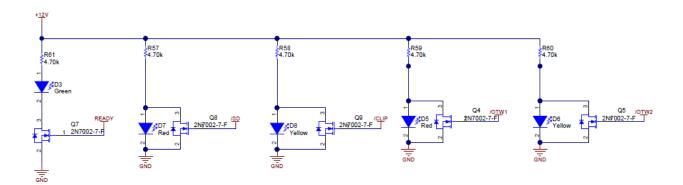
The entire test on Audio Amplifier was done with 12 V input on DC/DC boost converter (output 30V). The results particularly THD Vs Power reveals that Audio performance remains excellent.

6.1 Switch positions



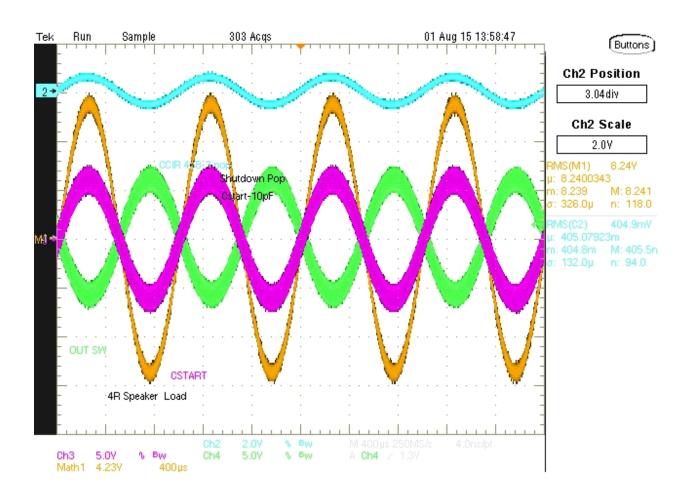
SW1 and SW2 are used to configure the amplifier in either BTL(Stereo- 100W + 100W on 4 ohm speakers) or PBTL(mono-200W on 2 ohm speaker) configuration .

SW1 and SW2 when connected as per schematic default position – Stereo mode.

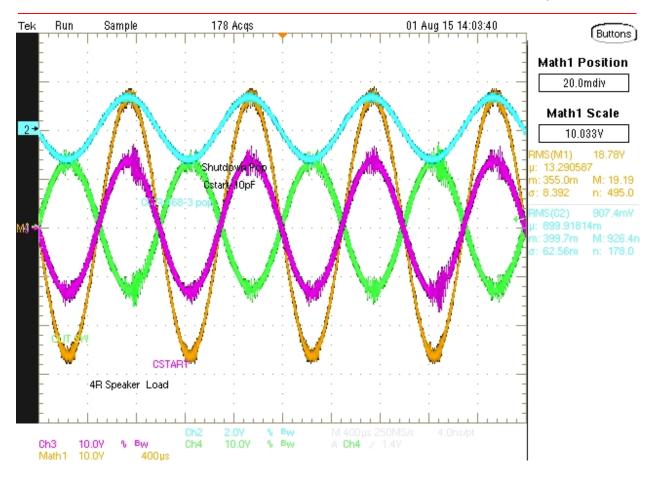

Both SW1 and SW2 moved to their alternative position – Mono mode PBTL .In this mode Short J8 and J9 , Short J10 and J11 and put 2 ohm load Across them .

SW3 is used for Shutdown of Audio Amplifier .In default position the Audio Amp is enabled.

6.2 Indication LEDS

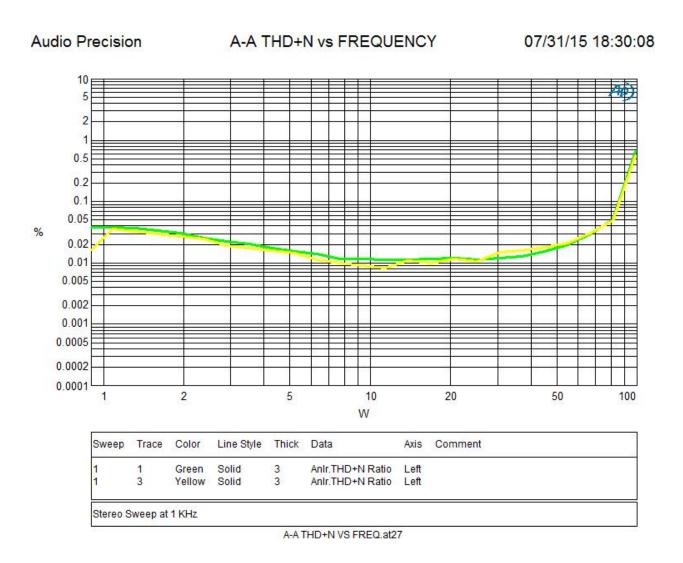


SD	OTW1	OTW2,	DESCRIPTION		
0	0	0	Overtemperature (OTE) or overload (OLP) or undervoltage (UVP)		
0	0	1	Overload (OLP) or undervoltage (UVP). Junction temperature higher than 100°C (overtemperature warning)		
0	1	1	Overload (OLP) or undervoltage (UVP)		
1	0	0	Junction temperature higher than 125°C (overtemperature warning)		
1	0	1	Junction temperature higher than 100°C (overtemperature warning)		
1	1	1	Junction temperature lower than 100°C and no OLP or UVP faults (normal operation)		

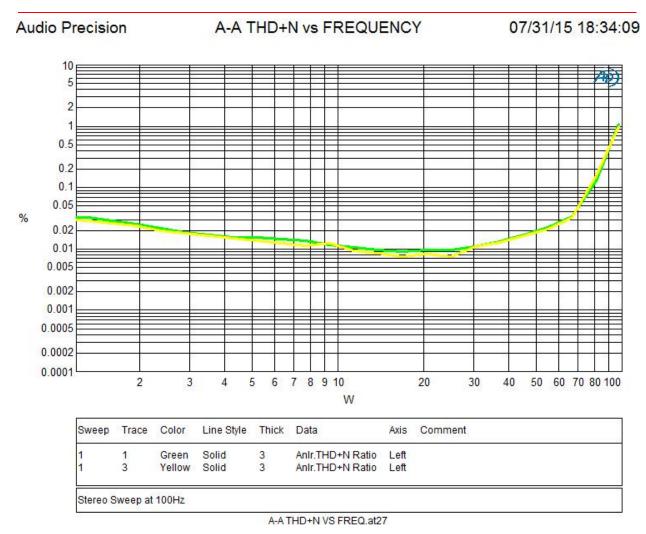

6.3 BTL: Stereo Waveforms

6.3.1 Input /Output Audio

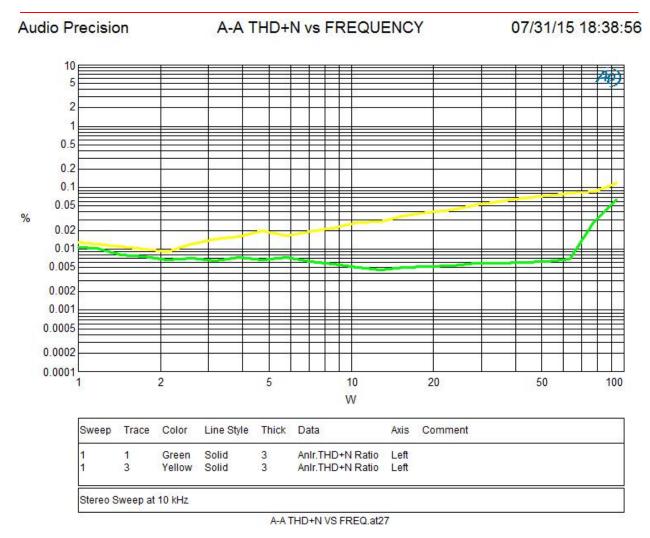
CH3- Out L+ , CH4- Out L- , CH2-Input L ,Math M1- CH3-CH4 seen by the 4 Ohm Load (17W+17W) Input -400mV RMS 1 KHz Signal (20 dB Gain)



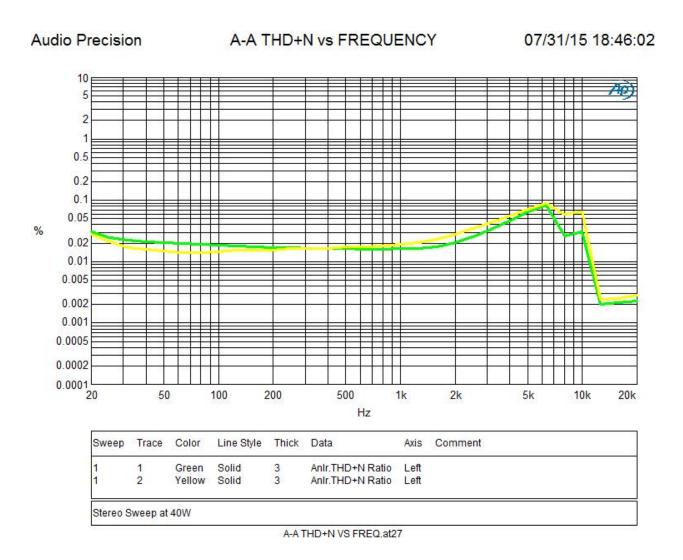
CH3- Out L+ , CH4- Out L- , CH2-Input L ,Math M1- CH3-CH4 seen by the 4 Ohm Load (90W+90W)
Input -900mV RMS 1 KHz Signal (20 dB Gain)



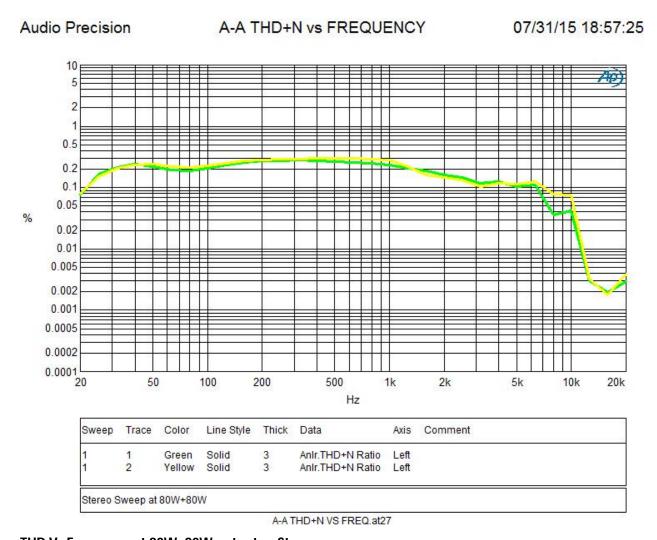
6.3.2 THD Vs Power: BTL mode


THD Vs Power at 1KHz input signals – Stereo sweeps

THD Vs Power at 100 Hz input signals - Stereo sweeps



THD Vs Power at 10 kHz input signals – Stereo sweeps



6.3.3 THD Vs Frequency: BTL mode

THD Vs Frequency at 40W+40W outputs - Stereo sweeps

THD Vs Frequency at 80W+80W outputs – Stereo sweeps

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.