

Fairchild Reference Design RD-536

The following reference design supports inclusion of FL7733A in design of an LED Driver with Power Factor Correction. It should be used in conjunction with the FL7733A datasheet as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at www.fairchildsemi.com.

Application	Fairchild Device	Input Voltage Range		Output Voltage (Rated Current)	Topology
LED Lighting	FL7733A	100-305 V _{AC}	10.875 W	15 V (0.725 A)	PSR Flyback

Key Features

Performance

- $< \pm 3\%$ Total Constant Current Tolerance Over All Conditions
- < ±1% Over Universal Line Voltage Variation
- $<\pm1\%$ from 50% to 100% Load Voltage Variation
- $< \pm 1\%$ with $\pm 20\%$ Magnetizing Inductance Variation
- Primary-Side Regulation (PSR) Control for Cost-Effective Solution without Requiring Input Bulk Capacitor and Secondary Feedback Circuitry
- Application Input Voltage Range: 80 V_{AC} 308 V_{AC}
- High PF of > 0.9, and Low THD of < 10% Over Universal Line Input Range
- Fast < 200 ms Startup (at 85 V_{AC}) using Internal High-Voltage Startup with V_{DD} Regulation
- Adaptive Feedback Loop Control for Startup without Overshoot

Protection

- LED Short / Open Protection
- Output Diode Short Protection
- Sensing Resistor Short / Open Protection
- V_{DD} Over-Voltage Protection (OVP)
- V_{DD} Under-Voltage Lockout (UVLO)
- Over-Temperature Protection (OTP)
- All Protections are Auto Restart (AR)
- Cycle-by-Cycle Current Limit

1. Schematic

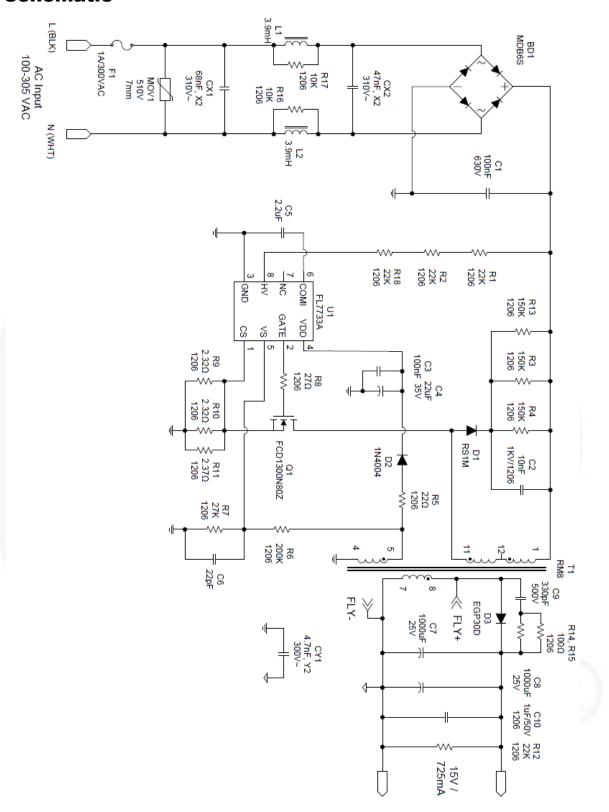


Figure 1. Schematic

2. Transformer

2.1. Transformer Schematic Diagram

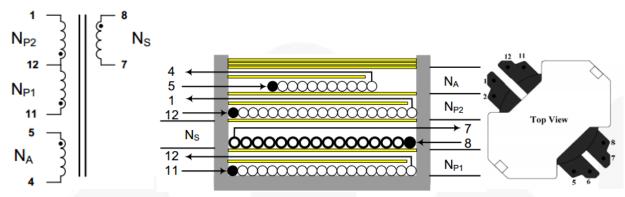


Figure 2. Transformer Bobbing Structure and Pin Configuration

2.2. Winding Specification

Windings	Pins (S→F)	Wire (AWG)	Turns	Layers	Winding Direction	Winding Method
N _{p1}	11→12	30	30	1	Forward	Solenoid
Insulation: 1 tap	Insulation: 1 tape layer between coil and finish lead, 1 tape layer after winding					
Ns	8→7	25 TIW	12	1	Forward	Solenoid
Insulation: 1 tap	Insulation: 1 tape layer after winding					
N _{p2}	12→1	30	30	1	Forward	Solenoid
Insulation: 1 tape layer between coil and finish lead, 1 tape layer after winding						
N _A	5→4	30	15	1	Forward	Ctr. Solenoid
Insulation: 1 tape layer between coil and finish lead, 3 tape layer after winding						

Required Components

MFG: TDK Material: PC47 Core: RM8

Bobbin: 12-pin, remove

pins 2,3,10

Insulation Tape: Polyester, .050mm, 3M 1350 or Eq.

2.3. Electrical Characteristics

	Pin	Specification	Remark
Inductance	11→1	1000 μH ± 5%	50 kHz, 1 V
Leakage	11→1	< 6 µH	Short all other pins

3. Bill of Materials

Ref Des	Manf. P/N	Description	Qty	Manufacturer	Package
F1	36911000440	Fuse, 1.0A, 300VAC, time lag		Littelfuse	TE5
MOV1	SIOV-S07K320	Varistor, MOV, leaded, 7mm, 510V		Epcos	d=7mm
CX1	BFC233820683	Capacitor, X2, met. PP film, 68nF, 310VAC, 20%		Vishay	6x13mm
CX2	F861AE473M31 0C	Capacitor, X2, met. PP film, 47nF, 310VAC, 20%	1	Kemet	
C1	ECQE6104KF3	Capacitor, met. PE film, 100nF, 630V, 10%	1	Panasonic	ls=5mm
C2		Capacitor, MLCC, 10nF, 1KV, 10%, X7R, 1206	1		1206
C3		Capacitor, MLCC, 100nF, 50V, 10%, X7R, 0805	1		0805
C4	KMG series	Capacitor, Al. El., 22uF, 35V, 105C, 20%	1	Chemi-Con	5x11mm
C5		Capacitor, MLCC, 2.2uF, 25V, 10%, X7R, 0805	1		0805
C6		Capacitor, MLCC, 22pF, 50V, 10%, NP0, 0805	1		0805
C7, C8	UVY1E102MPD	Capacitor, Al. El., 1000uF, 25V, 105C, 20%	2	Nichicon	10x16mm
C9		Capacitor, MLCC, 330pF, 500V, 10%, X7R, 1206	1		1206
C10		Capacitor, MLCC, 1uF, 50V, 10%, X7R, 1206	1		1206
CY1	DE2E3KY472M A3BU02F	Capacitor, Y2, ceramic disc, 4.7nF, 300VAC, 20%	1	Murata	d=10mm
R1,R2, R12,R18		Resistor, SMT, 1206, 22K, 5%	4	\	1206
R3, R4, R13		Resistor, SMT, 1206, 150K, 5%	3		1206
R5		Resistor, SMT, 1206, 220hm, 5%	1		1206
R6		Resistor, SMT, 1206, 200K, 5%	1		1206
R7		Resistor, SMT, 1206, 27K, 5%	1		1206
R8		Resistor, SMT, 1206, 27ohm, 5%	1		1206
R9, R10		Resistor, SMT, 1206, 2.32 ohm, 1%	2		1206
R11	A,	Resistor, SMT, 1206, 2.37 ohm, 1%	1	A	1206
R14, R15		Resistor, SMT, 1206, 100ohm, 5%	2	A	1206
R16, R17		Resistor, SMT, 1206, 10K, 5%	2	/.	1206
L1, L2	RLB9012- 392KL	Inductor, radial, 3.9mH, 240mA, 9mm	2	Bourns	9mm
T1		Transformer, custom, RM8	1		RM8
BD1	MDB6S	Bridge rectifier, 1A, 600V	1	Fairchild	microSMT
D1	RS1M	Diode, fast rectifier, 1A, 1000V	1	Fairchild	SMA
D2	1N4004	Diode, general purpose rectifier, 1A, 400V	1	Fairchild	DO-41
D3	EGP30D	Diode, ultrafast rectifier, 3A, 200V		Fairchild	DO-201AD
Q1	FCD1300N80Z	MOSFET, N-ch, 800V, 1.3 ohm, D-PAK		Fairchild	D-PAK
U1	FL7733AMX	IC, single-stage PFC, PSR LED driver		Fairchild	SOIC-8

4. Performance

4.1. Output Current Regulation

Figure 3. Output Current Regulation Data Plotted against Line Variation

Table 1. Output Current Regulation, Spec. = Set I_{OUT} at 725 mA with 15 V Load and 120 V_{AC} Input

	I _{OUT} (mA)		
V _{IN} (V _{AC})	15 V	13 V	17 V
100	717.1	723.4	709.8
120	721.4	727.7	714.3
220	738.4	744.9	729.7
240	741.3	748.2	733.1
277	746.9	754.2	754.2
305	751.5	758.4	758.4

4.2. Efficiency

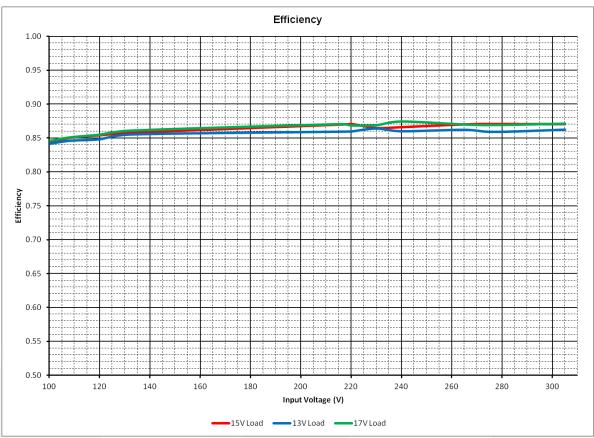


Figure 4. Efficiency Data Plotted against Line Variation

Table 2. Efficiency Summary

		Efficiency (%)	/
V _{IN} (V _{AC})	15 V	13 V	17 V
100	84.2	84.1	84.6
120	85.4	84.8	85.5
220	87.1	86.0	86.9
240	86.6	86.0	87.4
277	87.1	85.9	86.9
305	87.0	86.2	87.1

4.3. Power Factor

Figure 5. Power Factor Data plotted against Line Variation

Table 3. Power Factor Summary, Spec.: >0.90 at Nominal Line Voltages

V _{IN} (V _{AC})	P.F.
120	.996
220	.957
240	.943
277	.906

5. Related Resources

FL7733A – Product Folder

Reference Design Disclaimer

Fairchild Semiconductor Corporation ("Fairchild") provides these reference design services as a benefit to our customers. Fairchild has made a good faith attempt to build for the specifications provided or needed by the customer. Fairchild provides this product "as is" and without "recourse" and MAKES NO WARRANTY, EXPRESSED, IMPLIED OR OTHERWISE, INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Customer agrees to do its own testing of any Fairchild reference designs in order to ensure design meets the customer needs. Neither Fairchild nor Customer shall be liable for incidental or consequential damages, including but not limited to, the cost of labor, requalifications, rework charges, delay, lost profits, or loss of goodwill arising out of the sale, installation or use of any Fairchild product.

Subject to the limitations herein, Fairchild will defend any suit or proceeding brought against Customer if it is based on a claim that any product furnished hereunder constitutes an infringement of any intellectual property rights. Fairchild must be notified promptly in writing and given full and complete authority, information and assistance (at Fairchild's expense) for defense of the suit. Fairchild will pay damages and costs therein awarded against Customer but shall not be responsible for any compromise made without its consent. In no event shall Fairchild's liability for all damages and costs (including the costs of the defense by Fairchild) exceed the contractual value of the products or services that are the subject of the lawsuit. In providing such defense, or in the event that such product is held to constitute infringement and the use of the product is enjoined, Fairchild, in its discretion, shall procure the right to continue using such product, or modify it so that it becomes noninfringing, or remove it and grant Customer a credit for the depreciated value thereof. Fairchild's indemnity does not extend to claims of infringement arising from Fairchild's compliance with Customer's design, specifications and/or instructions, or the use of any product in combination with other products or in connection with a manufacturing or other process. The foregoing remedy is exclusive and constitutes Fairchild's sole obligation for any claim of intellectual property infringement and Fairchild makes no warranty that products sold hereunder will not infringe any intellectual property rights.

All solutions, designs, schematics, drawings, boards or other information provided by Fairchild to Customer are confidential and provided for Customer's own use. Customer may not share any Fairchild materials with other semiconductor suppliers.