

PMP10927 Rev. A Test Results

1. PHOTO OF THE PROTOTYPE:

Figure 1. Front image of tested board

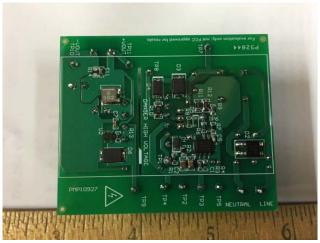


Figure 2. Back image of tested board

The PMP10927 is a 12-W off-line discontinuous mode (DCM) flyback converter that provides constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler. The controller uses primary side regulation (PSR) and detects a wake-up signal from the UCC24650 secondary-side voltage-droop monitor for improved transient response to large load steps. This reference design shows how the UCC28730 can provide ultra-low standby power without sacrificing start-up time or output transient response with an internal 700-V start-up switch, dynamically controlled operating states, and a tailored modulation profile. The UCC28730 uses frequency modulation, peak primary current modulation, valley switching and valley skipping in its control algorithm in order to maximize efficiency over the entire operating range. The PMP10927 reference design exceeds Level VI and CoC Tier 2 specifications, effective 2016, for no-load stand-by power, average efficiency, and 10% load effeciency for Energy-Efficiency Criteria for Active Mode (excluding low voltage external power supplies). Note that this reference design is not an orderable device from TI, but shows the performance of a UCC28730/UCC24650 in a constant voltage/ constant current controller in a typical 12-W adapter application.

2. Electrical Performance Specifications

PARAMETER	METER TEST CONDITIONS		NOM	MAX	UNIT S	
Input Characteristics						
Voltage range, V _{IN}		85	115/230	265	V _{RMS}	
Maximum input current	$V_{IN} = V_{INmin}, I_{OUT} = I_{OUTmax}$			0.290	A _{RMS}	
Line frequency		47	60/50	63	Hz	
No-load power consumption	$V_{INmin} \le V_{IN} \le V_{INmax}$, $I_{OUT} = 0A$			5	mW	
Output Characteristics						
Output voltage, CV mode, V _{OUT}	$V_{INmin} \le V_{IN} \le V_{INmax}$, $0A \le I_{OUT} \le I_{OUTmax}$	22.8	24	25.2	V	
Output load current, CV mode, I _{OUTmax}	$V_{INmin} \le V_{IN} \le V_{INmax}$	0.475	0.50	0.525	А	
Output voltage regulation	Line Regulation:			5	%	
	$V_{INmin} \le V_{IN} \le V_{INmax}, I_{OUT} = I_{OUTmax}$			5	70	
	Load Regulation: 0A ≤ I _{OUT} ≤ I _{OUTmax}			5	%	
Output voltage ripple	$V_{INmin} \le V_{IN} \le V_{INmax}$, $0A \le I_{OUT} \le I_{OUTmax}$			80	mVpp	
Output over current, I _{OCC}	$V_{INmin} \le V_{IN} \le V_{INmax}$			0.58	Α	
Minimum output voltage, CC mode	$V_{INmin} \le V_{IN} \le V_{INmax}$, $I_{OUT} = I_{OCC}$		9		V	
- " '	$I_{OUT} = I_{OUTmax}$		65		V _{RMS}	
Turn-off voltage	I _{OUT} = 10% I _{OUTmax}		26			
Systems Characteristics						
Switching frequency, f _{SW}		0.200		50	kHz	
Average efficiency	25%, 50%, 75%, 100% load average	83.26			%	
10% efficiency	10% load	73.26			%	
Operating temperature			25		°C	

3. Efficiency

$V_{IN} \ V_{RMS}$	P _{IN} W	V _{OUT}	I _{OUT} A	P _{OUT}	EFFFICIENCY
85V, 60Hz	1.410	24.090	0.0501	10%	0.8559
	3.463	24.083	0.125	25%	0.8692
	7.104	24.102	0.251	50%	0.8515
	10.853	24.134	0.377	75%	0.8383
	14.526	24.166	0.503	100%	0.8368
115V, 60Hz	1.4063	24.101	0.0501	10%	0.8586
	3.452	24.067	0.125	25%	0.8714
	6.938	24.095	0.249	50%	0.8647
	10.633	24.129	0.377	75%	0.8555
	14.187	24.167	0.503	100%	0.8568
230V, 50Hz	1.4571	24.103	0.0501	10%	0.8287
	3.494	24.069	0.125	25%	0.8610
	6.919	24.099	0.249	50%	0.8672
	10.495	24.128	0.377	75%	0.8667
	14.035	24.171	0.503	100%	0.8662
265V, 50Hz	1.4836	24.100	0.0501	10%	0.8138
	3.528	24.072	0.125	25%	0.8528
	6.953	24.097	0.249	50%	0.8629
	10.518	24.128	0.377	75%	0.8648
	14.060	24.17	0.503	100%	0.8646

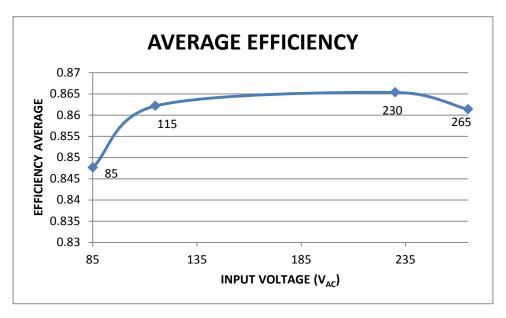


Figure 3. Four-point average efficiency in active mode with respect to input voltage

According to the European Commision Code of Conduct (CoC) on Energy Efficiency of External Power Supplies, Version 5, Tier 2 and DoE Level VI, a single output power supply with a rated output power of 12-W and greater than 6 V should have a four-point average efficiency greater than 83.2%.

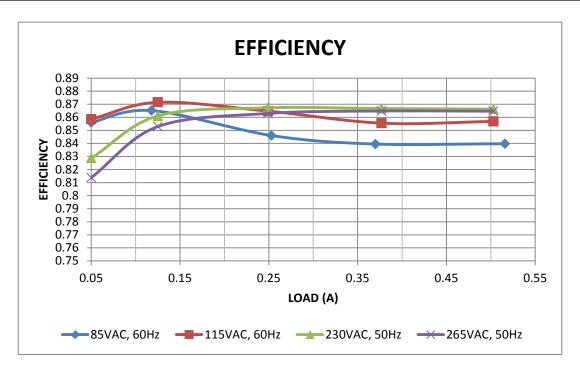


Figure 4. Efficiency over line and load

At 10% load, or 0.05 A output, PMP10927 exceeds the CoC, Tier 2 minimum requirement of 0.7326 for a single output power supply with a rated output power of 12-W and greater than 6 V.

4. No-Load Power Consumption

INPUT VOLTAGE	INPUT POWER
85 VRMS, 60Hz	2.483 mW
115 VRMS, 60Hz	2.554 mW
230 VRMS, 50Hz	2.674 mW
265 VRMS, 50Hz	3.265 mW

The PMP10927 meets "Zero-Power" requirements by having less than 5-mW of no-load power consumption at 230 Vac.

5. Output Voltage vs Output Current

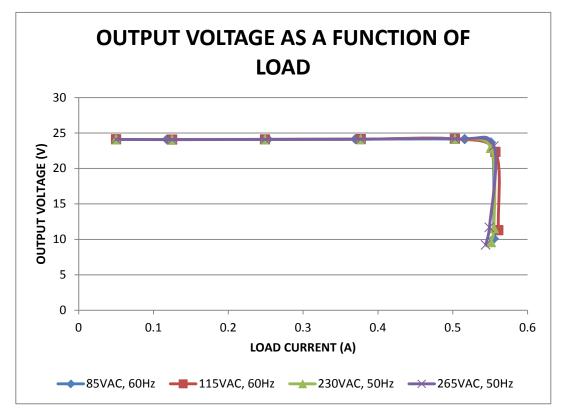


Figure 5. Constant-Voltage, Constant-Current operating modes.

The converter is in constant-voltage operating mode from 0 A load up to approximately 0.55 A. Once reaching this output over-current threshold, the converter transitions into constant-current mode where the load current remains constant until the output voltge falls below 10 V, at which point the converter enters shutdown/restart. If the load demand is decreased to the constant current operating region, the converter will automatically restart.

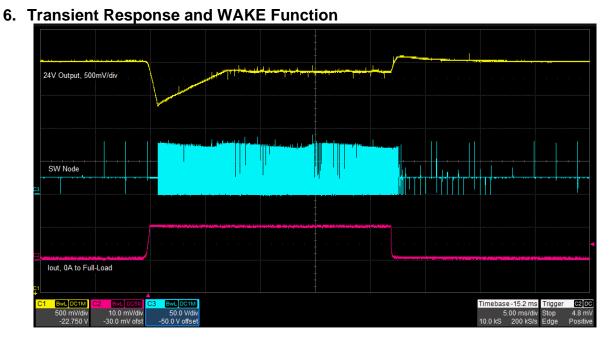


Figure 6. Load transient from No-Load to Full-Load

The transient response shown was taken with a 115 VAC, 60 Hz input voltage and a load transition from 0 A to full load. Channel 2 is the load current on a scale of 0.50 A per division, channel 1 is the output voltage on a scale of 500 mV per division, offset from the center line by -22.75 V, channel 3 I the secondary side switch node. Output voltage undershoot may vary dependent upon the specific time the transient occurs during the switching cycle.

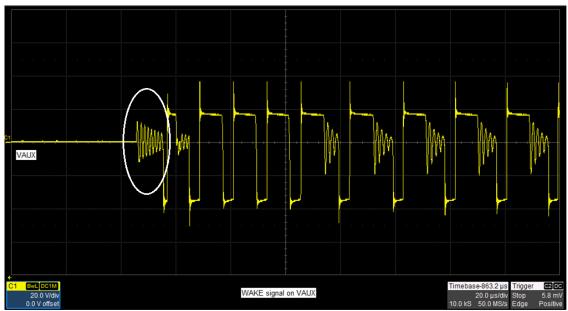


Figure 7. WAKE Signal Transmitted to the AUX Winding

Figure 7 shows the wake-up alert signal transmitted to the PSR controller on the AUX winding.

7. Output Ripple

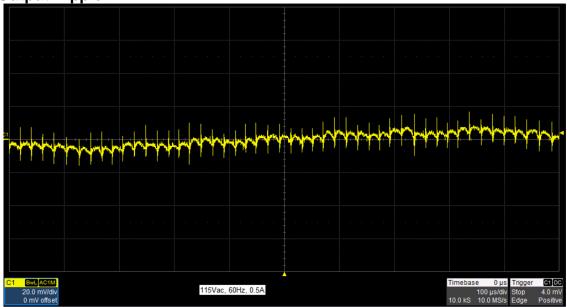


Figure 8. Output Ripple at Full-Load, 115Vin

Figure 8 shows the output voltage ripple taken at full load with an input voltage of 115 VAC, 60 Hz and the waveform is AC coupled, with 20 MHz bandwidth limit. The ripple pattern seen is characteristic of the EMI dithering method used by the UCC28730 controller.

8. Turn On Waveform

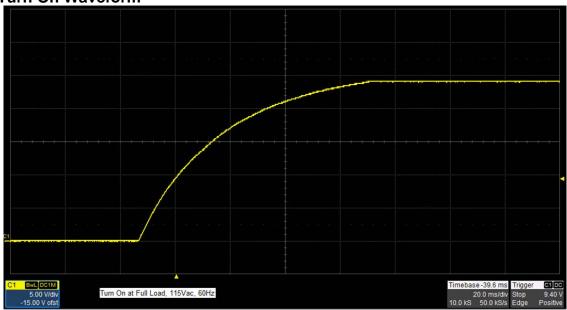


Figure 9. Output Voltage Turn On Waveform

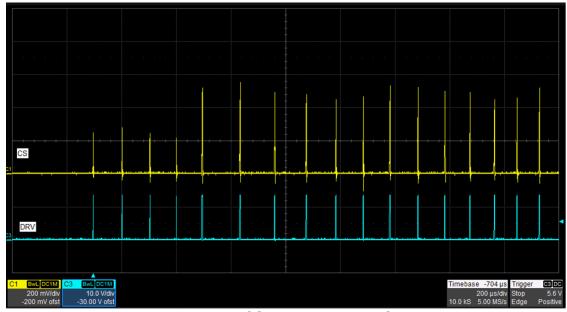


Figure 10. CS and DRV at Turn On

Figure 10 shows how the UCC28730 limits the first four switching-cycle current peaks to $I_{PP(min)}$ in order to monitor for any initial input or output faults with limited power delivery. After these initial four pulses, the controller will limit the amplitude of the peak primary current to approximately 0.67 x $I_{PP(max)}$. Modifications are also made to D_{MAGCC} , increasing it from 0.432 to 0.650. These modifications during startup allow high frequency charge-up of the output capacitor to avoid audible noise. Once the VS signal is greater than 1.36 V (approximately 1.45 V on the output), D_{MAGCC} is restored to its normal value and the peak primary current resumes at $I_{PP(max)}$.

9. Switching Waveform

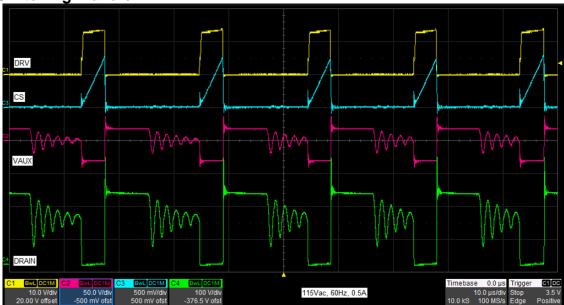


Figure 11. Primary Side Switching Waveform

The typical switching waveform can be seen in Figure 11. Channel 1 shows the gate drive at 10 V per division, channel 2 shows the AUX winding at 50 V per division, channel 3 is the CS waveform at 500 mV per division, and channel 4 shows the MOSFET drain to source voltage at 100 V per division. The scan was taken at 0.5 A load, 115 V_{AC} , 60 Hz input voltage. At this operating point, the switching frequency is dithering between 50 kHz and 45 kHz due to valley skipping. Figure 12 shows the switching waveforms on the secondary side.

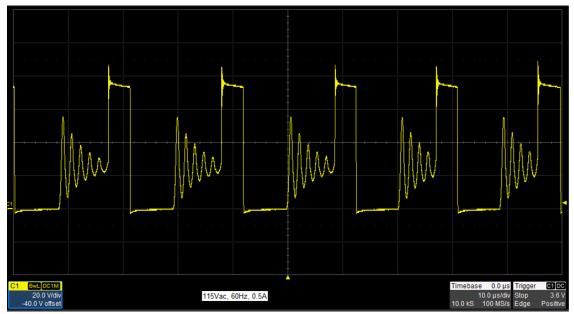


Figure 12. Secondary Side Switching Waveform

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS, OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE

LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for

such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.