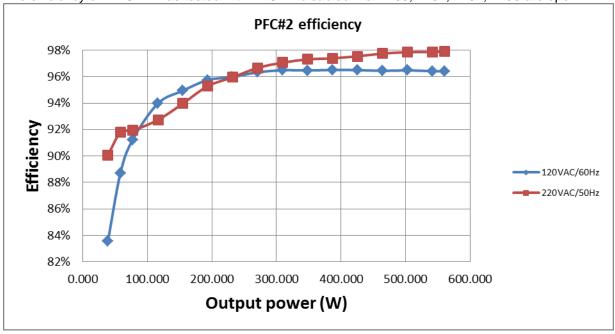

1 Photo

The photographs below show the PMP10948 Rev A assembly. This circuit was built on a PMP10948 Rev A PCB.

Top side


Bottom side

2 Efficiency on PFC #2:

The efficiency on PFC #2 was tested with PFC #1 disabled. I.e. L200, L201, L202, L203 are open..

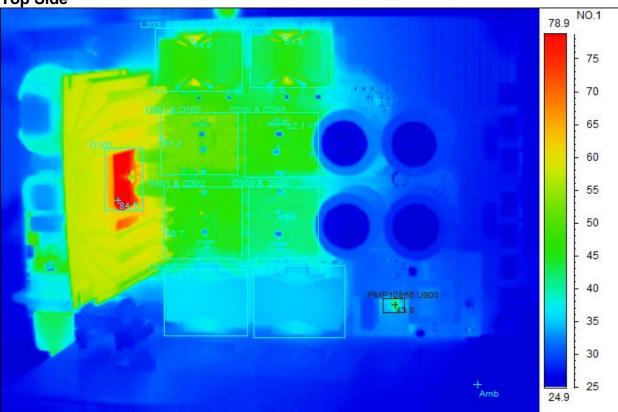
120V_{AC}/60Hz

Vin,rms(V)	lin,rms(A)	Pin(W)	P.F.	Vout(V)	Iout(A)	Pout(W)	Eff. (%)
120.07	4.852	581.20	0.998	386.4	1.450	560.280	96.40%
119.93	4.693	561.50	0.998	386.4	1.401	541.346	96.41%
120.02	4.354	521.10	0.997	386.4	1.301	502.706	96.47%
120.03	4.019	480.80	0.997	386.4	1.200	463.680	96.44%
120.03	3.685	440.50	0.996	386.4	1.100	425.040	96.49%
120.04	3.355	400.80	0.995	386.4	1.001	386.786	96.50%
120.05	3.020	360.50	0.994	386.4	0.900	347.760	96.47%
120.05	2.692	320.80	0.993	386.4	0.801	309.506	96.48%
120.05	2.361	280.80	0.991	386.4	0.700	270.480	96.32%
120.06	2.033	241.20	0.988	386.4	0.599	231.454	95.96%
120.06	1.713	202.20	0.983	386.4	0.501	193.586	95.74%
120.08	1.391	162.83	0.975	386.4	0.400	154.560	94.92%
120.08	1.074	123.81	0.960	386.5	0.301	116.337	93.96%
120.08	0.763	84.75	0.925	386.5	0.200	77.300	91.21%
120.13	0.617	65.82	0.888	386.6	0.151	58.377	88.69%
120.08	0.470	46.86	0.831	387.7	0.101	39.158	83.56%

PMP10948 Rev A Test Results

220V_{AC}/50Hz

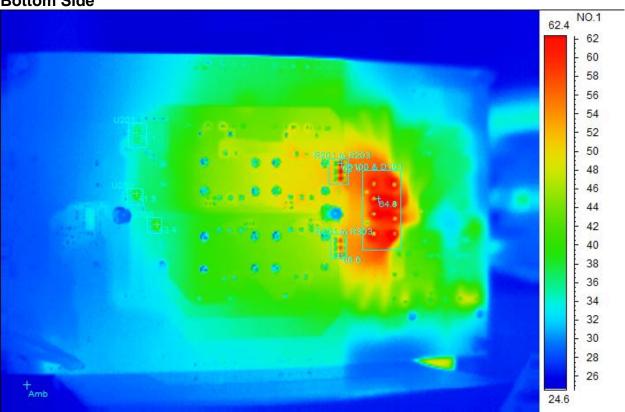
\ /: (\ /\)	1:	D: (\A/\	ם כ	\/+/\/\	Laut/A)	D =+/\A/\	Ltt (0/)
Vin,rms(V)	lin,rms(A)	Pin(W)	P.F.	Vout(V)	lout(A)	Pout(W)	Eff. (%)
220	2.643	572.40	0.984	386.4	1.450	560.280	97.88%
220	2.555	552.80	0.984	386.4	1.400	540.960	97.86%
220	2.378	513.80	0.982	386.4	1.301	502.706	97.84%
220	2.199	474.40	0.980	386.4	1.200	463.680	97.74%
220	2.026	435.80	0.978	386.4	1.100	425.040	97.53%
220	1.850	396.80	0.975	386.4	1.000	386.400	97.38%
220	1.676	357.80	0.971	386.4	0.901	348.146	97.30%
220	1.501	318.90	0.966	386.4	0.801	309.506	97.05%
220	1.329	280.30	0.959	386.5	0.701	270.937	96.66%
220	1.158	241.70	0.949	386.5	0.600	231.900	95.95%
220	0.986	202.90	0.935	386.6	0.500	193.300	95.27%
220	0.816	164.80	0.918	387.1	0.400	154.840	93.96%
220	0.675	125.97	0.849	389.4	0.300	116.820	92.74%
220	0.521	84.82	0.739	389.9	0.200	77.980	91.94%
220	0.372	63.74	0.780	390	0.150	58.500	91.78%
220	0.338	43.33	0.583	390.2	0.100	39.020	90.05%


3 Thermal Images

The thermal images below show a top view and bottom view of the board. The ambient temperature was 20° C with no forced air flow. The outputs were at 1300W full load (750W to V_{BULK} and 550W to B+).

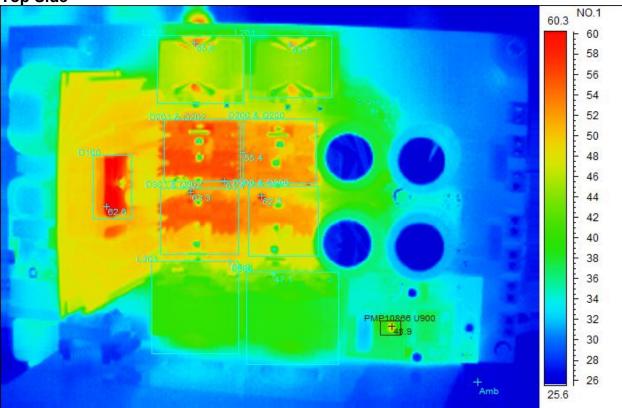
120V_{AC}/60Hz

- P_{in} =1348W, P.F. 0.999, B+:386.3V/1.451A, V_{BULK} :387.2V/1.879A, Efficiency: 95.6%


Top Side

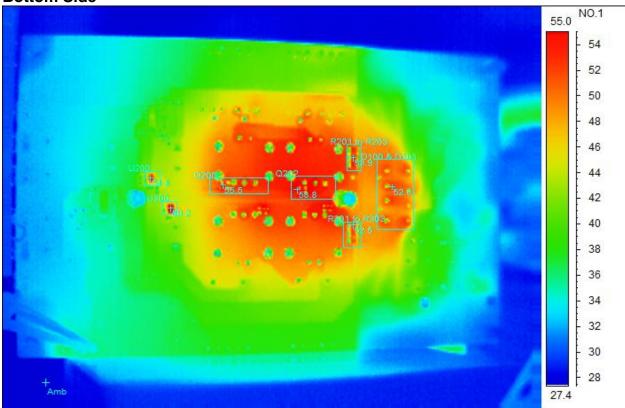
Spot analysis	Value
Amb Temperature	25.5°C
Area analysis	Value
D100Max	84.5°C
L203Max	64.0°C
L201Max	61.8°C
D201 & Q202Max	61.2°C
D200 & Q200Max	52.1°C
L301Max	45.7°C
L300Max	39.9°C
D301 & Q302Max	60.7°C
D300 & Q300Max	49.5°C
PMP10866 U900 Max	43.8°C

Bottom Side


Spot analysis	Value
Amb Temperature	24.2°C
Area analysis	Value
R201 to R203Max	62.4°C
R301 to R303Max	58.6°C
D100 & D101Max	64.8°C
U300Max	43.4°C
U200Max	41.5°C
U201 Max	38.1°C

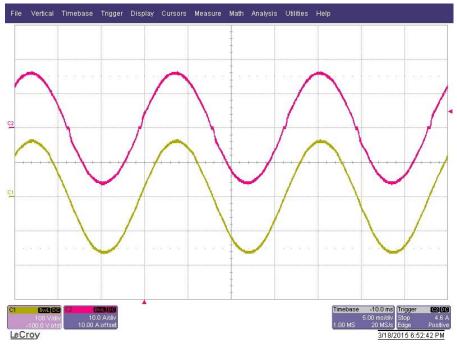
$220 V_{AC} \! / \! 50 Hz$

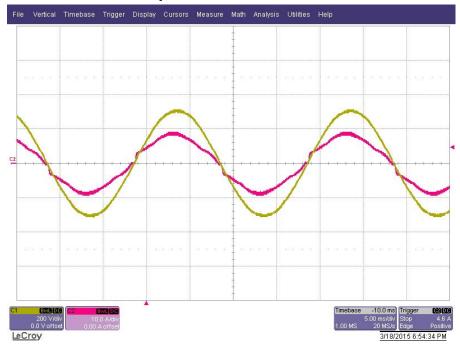
- P_{in}=1316W, P.F. 0.992, B+:386.3V/1.451A, V_{BULK}:387.4V/1.881A, Efficiency: 98%



Spot analysis	Value
Amb Temperature	25.9°C
Area analysis	Value
D100Max	62.6°C
L203Max	55.8°C
L201Max	53.7°C
D201 & Q202Max	61.4°C
D200 & Q200Max	55.4°C
L301Max	51.3°C
L300Max	47.1°C
D301 & Q302Max	63.3°C
D300 & Q300Max	62.3°C
PMP10866 U900 Max	48.9°C

Bottom Side

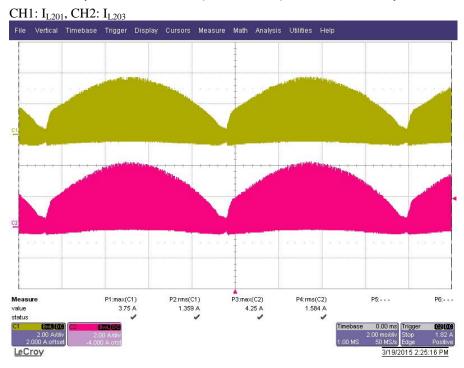

Spot analysis	Value
Amb Temperature	27.7°C
Area analysis	Value
R201 to R203Max	53.9°C
R301 to R303Max	52.5°C
D100 & D101Max	52.8°C
Q200Max	55.5°C
Q202Max	58.8°C
U300Max	59.2°C
U200 Max	54.8°C


4 Input current and voltage

The input current and voltage waveforms are shown in the plots below at 1300W full load (750W to V_{BULK} and 550W to B+).

4.1 120V_{AC}/60Hz input.

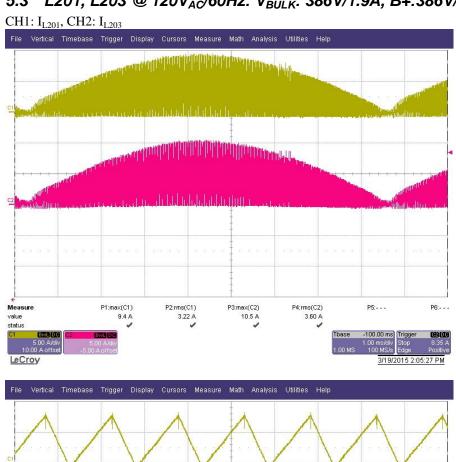
4.2 220V_{AC}/50Hz input.

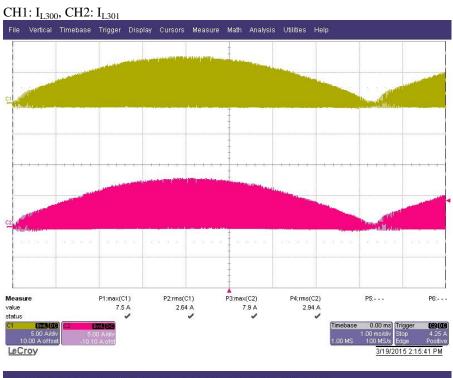


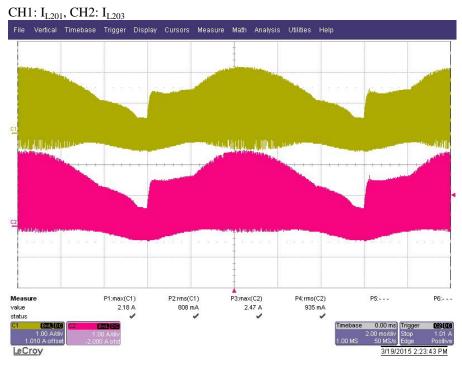
5 PFC inductor currents

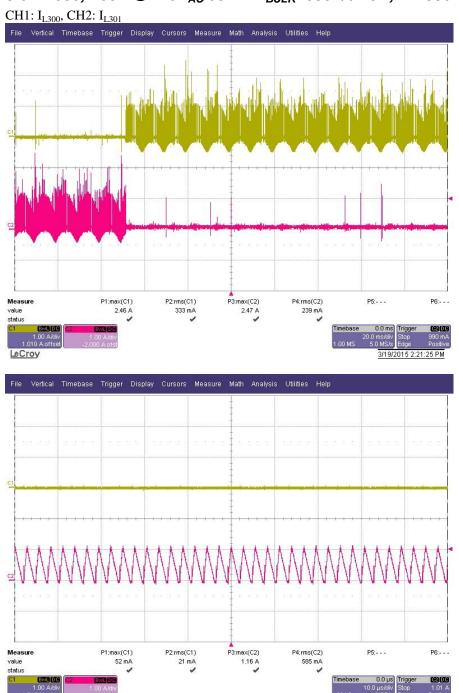
The PFC inductor currents are shown in the images below.

5.1 L201, L203 @ $120V_{AC}/60Hz$: V_{BULK} : 386V/0.75A, B+:386V/0.1A.


5.2 L300, L301 @ 120V_{AC}/60Hz: V_{BULK}: 386V/0.75A, B+:386V/0.1A.


5.3 L201, L203 @ 120V_{AC}/60Hz: V_{BULK}: 386V/1.9A, B+:386V/1.4A.

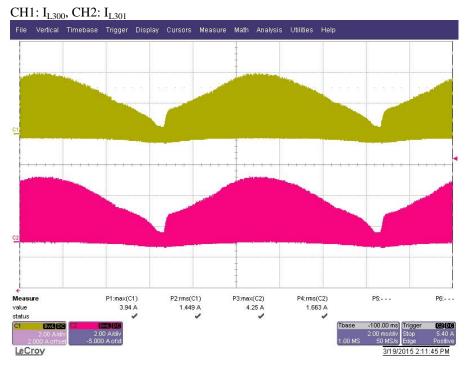

5.4 L300, L301 @ 120V_{AC}/60Hz: V_{BULK}: 386V/1.9A, B+:386V/1.4A.

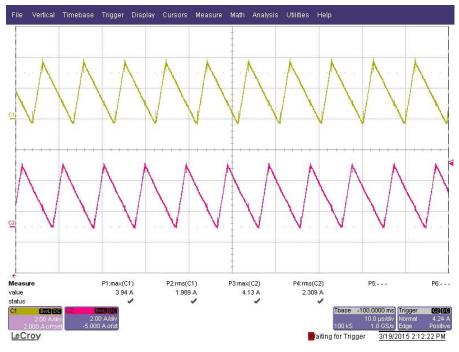

5.5 L201, L203 @ 220V_{AC}/50Hz: V_{BULK}: 386V/0.75A, B+:386V/0.1A.

5.6 L300, L301 @ $220V_{AC}$ /50Hz: V_{BULK} : 386V/0.75A, B+:386V/0.1A.

LeCroy

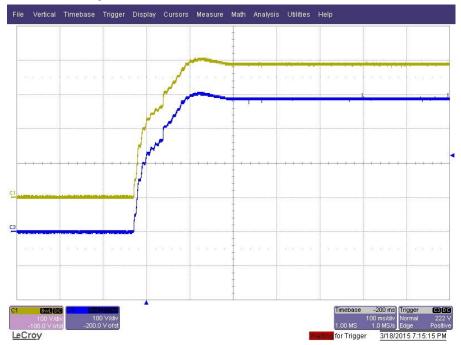
3/19/2015 2:22:03 PM




5.7 L201, L203 @ 220V_{AC}/50Hz: V_{BULK}: 386V/1.9A, B+:386V/1.4A.

5.8 L300, L301 @ 220V_{AC}/50Hz: V_{BULK}: 386V/1.9A, B+:386V/1.4A.




6 Startup

The output voltages at startup are shown in the images below.

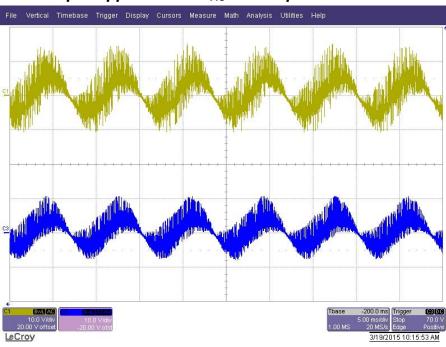
6.1 Start Up @ 120V_{AC}/60Hz: V_{BULK}: 386V/0.1A, B+:386V/0.1A.

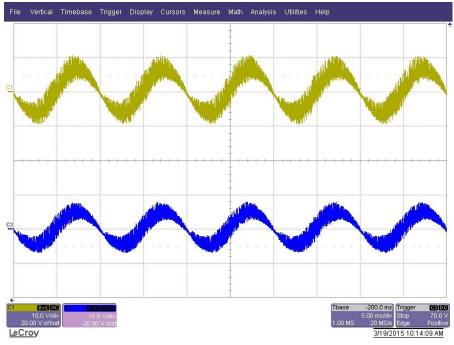


6.2 Start Up @ 220V_{AC}/50Hz: V_{BULK}: 386V/0.1A, B+:386V/0.1A.

6.3 Start Up @ $120V_{AC}/60Hz$: V_{BULK} : 386V/1.9A, B+:386V/1.4A. (Notice that resistive loads are applied here.)

6.4 Start Up @ 220 V_{AC} /50Hz: V_{BULK} : 386V/1.9A, B+:386V/1.4A. (Notice that resistive loads are applied here.)

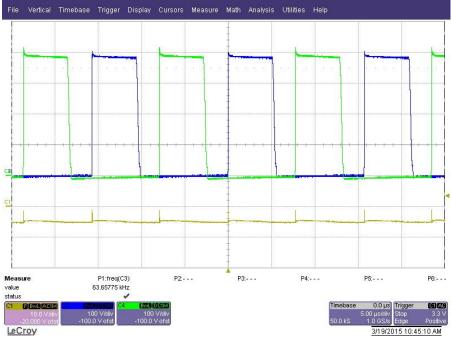



7 Output Ripple Voltages

The output ripple voltages are shown in the plots below at 1300W full load (750W to V_{BULK} and 550W to B+). CH1: V_{BULK} , CH3: B+

7.1 Output ripples @ 120V_{AC}/60Hz input.

7.2 Output ripples @ 220V_{AC}/50Hz input.

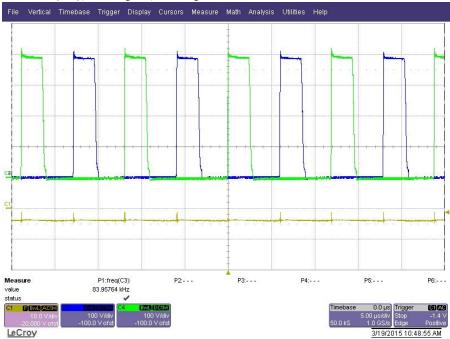


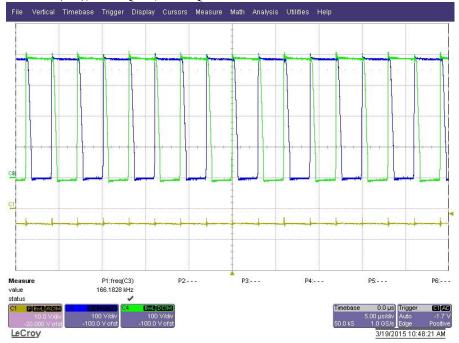
8 Switching Waveforms

The images below show key switching waveforms of PMP10948RevA. The waveforms are measured with 1300W full load (750W to V_{BULK} and 550W to B+).


8.1 Q200, Q202 @ 120V_{AC}/60Hz

8.2 Q200, Q202 @ 220V_{AC}/50Hz


CH1: VBULK (AC), CH3: Q200, CH4: Q202


8.3 Q300, Q302 @ 120V_{AC}/60Hz

CH1: B+ (AC), CH3: Q200, CH4: Q202

8.4 Q300, Q302 @ 220VAC/50Hz

CH1: B+ (AC), CH3: Q200, CH4: Q202

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.