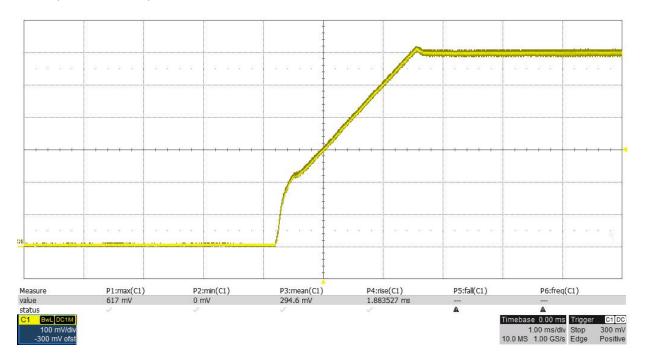
PMP20023 TPS544C25 600mV Voltage Mode Test Report:

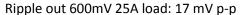
TPS544C25	version	huilt on	PCR	PMP10364B	tested on	model t2
11 3344623	VCISIOII	Duill Oil	1 60	1 1011 103040	LUSLUU OI	i ilibuci tz

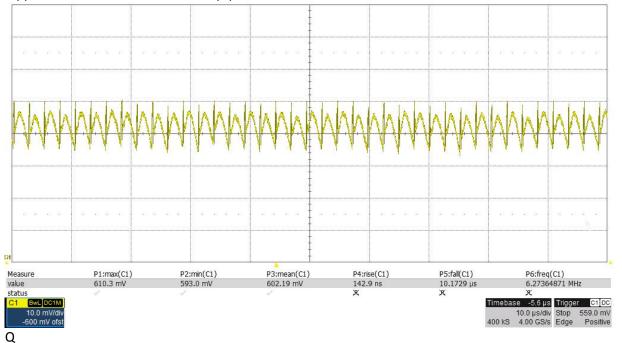
VOUT COMMAND mode Vout set to 600mV

Start up with Enable at no load & Ripple at full 30A load	page 2
Bode Plot	page 3
Step load response & details of step load	page 4
Load dump response & details of load dump	page 5
Main switching waveform:	page 6

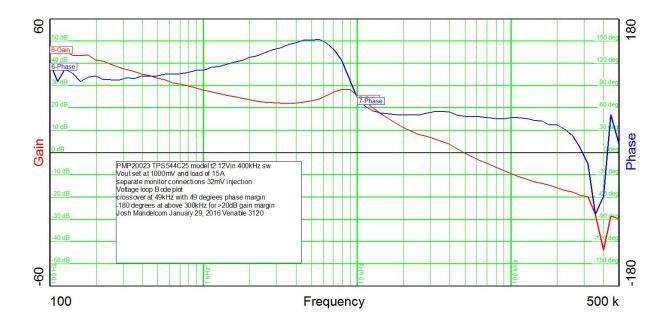
Unless otherwise stated: Vin is 12V

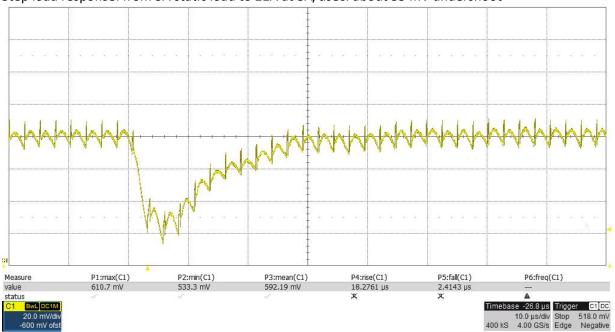

GUI readings: 600mVout and 12Vin: 30.0A on load and 31.3A on GUI 25.0A on load and 25.8A on GUI Readings 3 – 4% high


VOUT set to 1.0V

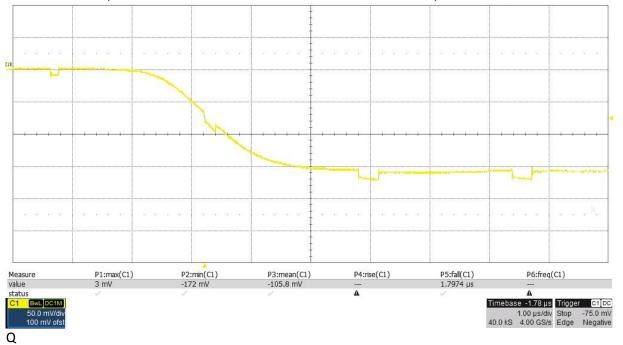

Start up with Enable at no load & Ripple at full 30A load	page 7
Bode Plots	page 8
Step load response & details of step load	page 9
Load dump response & details of load dump	page 10
Main switching waveform:	page 11
Input ripple at full load	page 12
Thermal images at full load	page 13

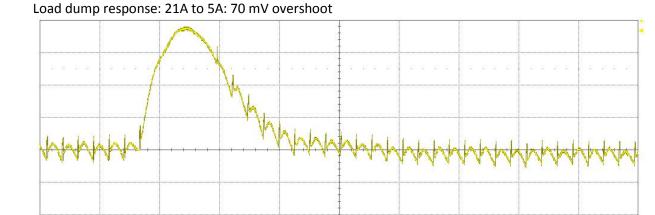
Start up no load: except for ~10 mV overshoot, rise is monotonic in 2.4 msec



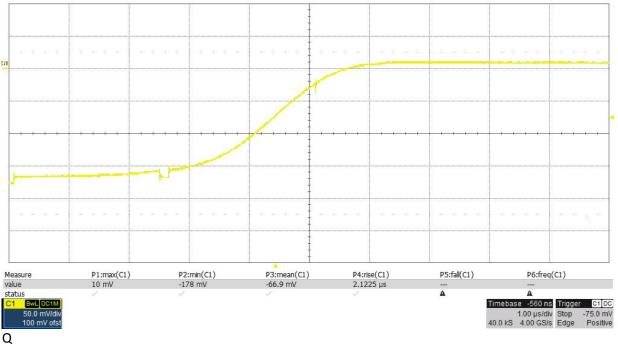

Bode plot:

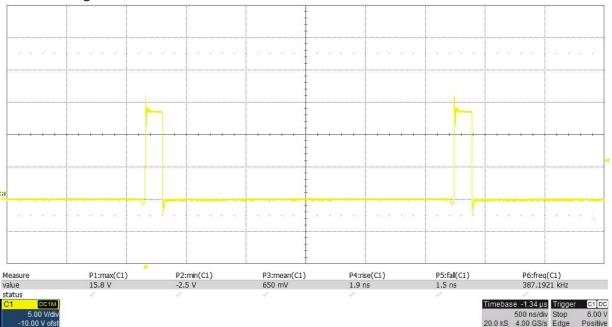
Vout 600mV 15A load: 49 kHz crossover with 49 degrees Phase margin

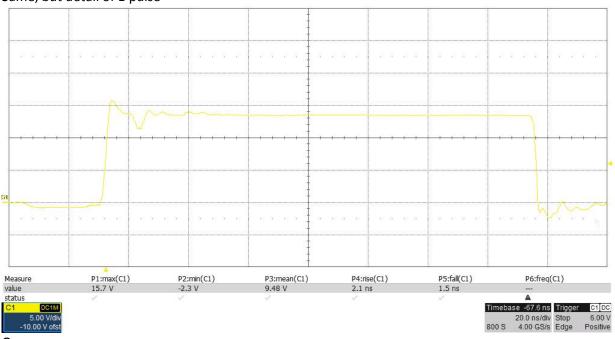



Step load response: from 5A static load to 21A at 8A/usec: about 55 mV undershoot

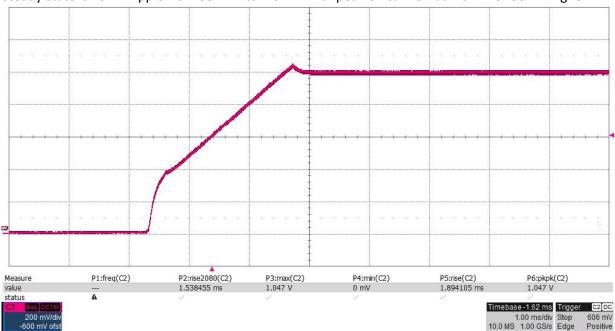
Detail of load step across 10 mOhms tied to Vout: 160mV in all for 16A; peak rate 8A/usec



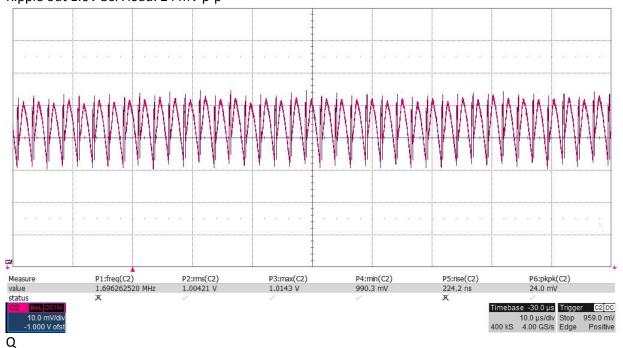



Details of load dump response across 10 mOhms tied to Vout: 160mV of 16A with peak slew rate $^{\sim}6A$ per usec

Main switching waveform: Full 30A load: 13.2Vin 600mV out

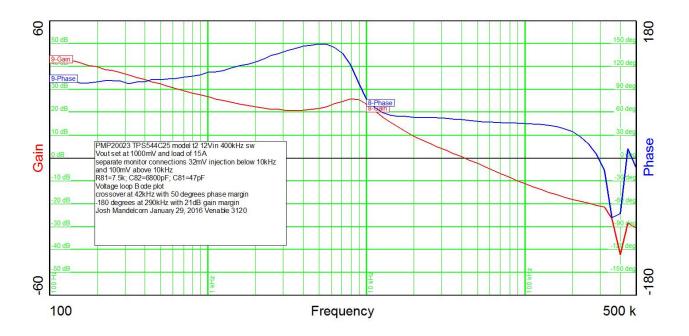


Same, but detail of 1 pulse

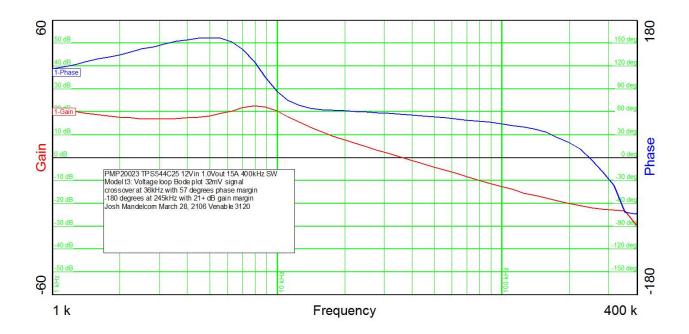


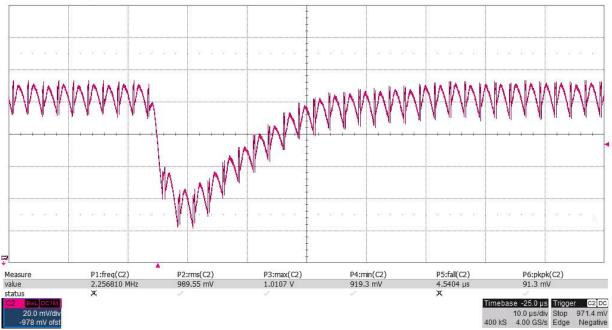
1.0Vout testing on model t3:

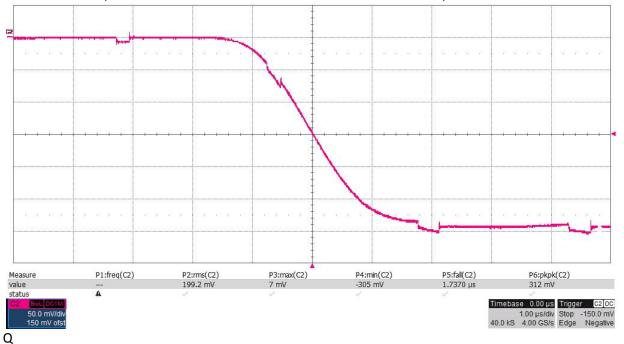
Start up no load: except for $^{\sim}35$ mV overshoot, rise is monotonic in 2.4 msec Steady state is 20mV ripple from 992mV to 1.012V with peak on turn on at 1.047V or 35mV higher



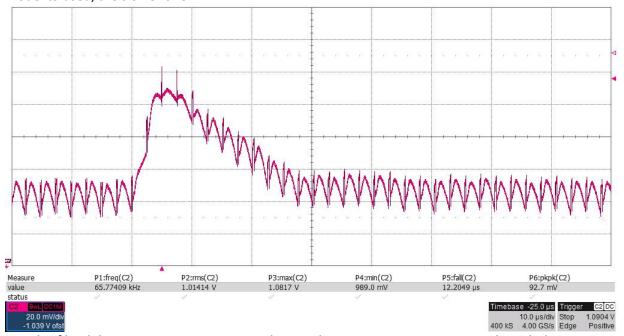
Ripple out 1.0V 30A load: 24 mV p-p



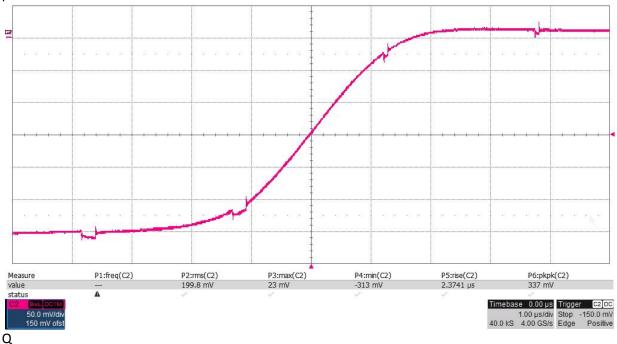

Bode plot: Vout 1.0V 15A load: 42 kHz crossover 50 degrees Phase margin model t2


Same, but model t3:

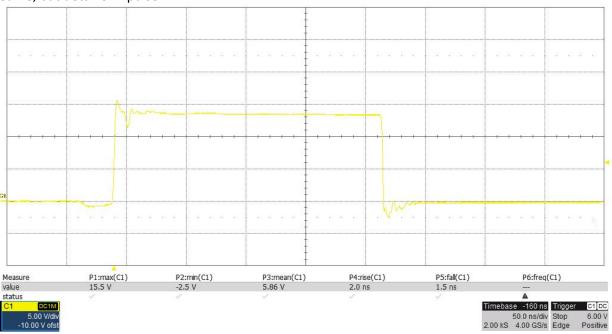
Step load response: from 12A static load to 26.7A at 7A/usec: about 70 mV undershoot Model t3 used, the slower one

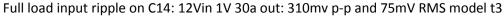


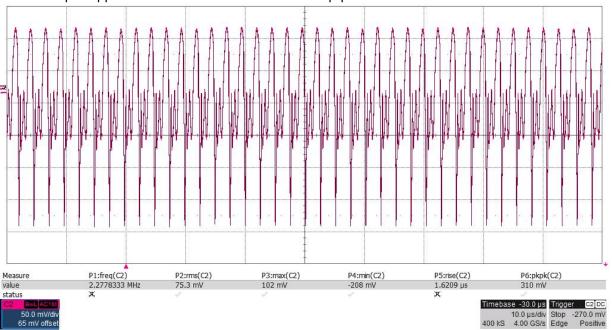
Detail of load step across 20 mOhms tied to Vout: 294mV in all for 14.7A; peak rate ~7A/usec



Load dump response: 27.5A to 12A: ~70 mV overshoot including "spikes" Model t3 used, the slower one

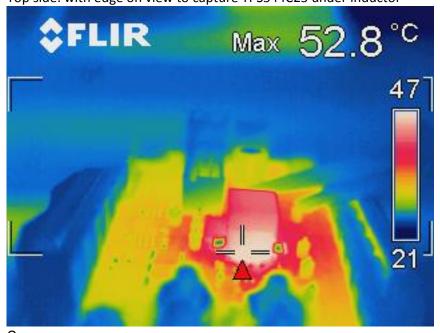

Details of load dump response across 20 mOhms tied to Vout: 310mV or 15.5A with peak slew rate $^{\sim}$ 5A per usec

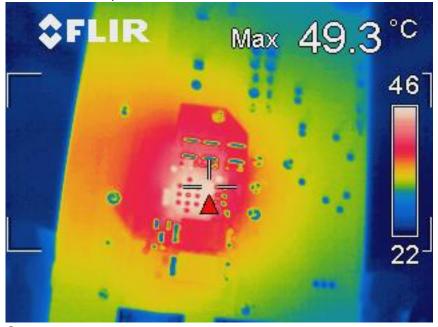




Same, but detail of 1 pulse

Q




Q

Full load thermal images: ~1 to 1.5 meter per second airflow: 12Vin 1V 30A out model t3 Top side: with edge on view to capture TPS544C25 under inductor

Bottom side to capture TPS544C25 interface to PCB:

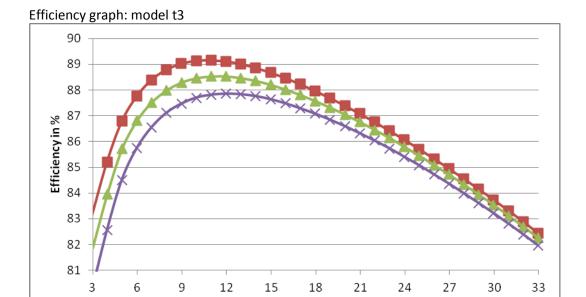
Efficiency data: (Model t3)

Vin V	lin A		lout A	eff %	loss W
12.002	0.044		0.000	N/A	0.530
12.002	0.125	1.002	0.975	64.994	0.526
12.002	0.212	1.002	1.974	77.820	0.564
12.002	0.303	1.002	2.973	81.828	0.662
12.002	0.395	1.003	3.972	83.963	0.761
12.002	0.484	1.003	4.971	85.727	0.830
12.002	0.575	1.003	5.970	86.815	0.909
12.002	0.665	1.003	6.967	87.525	0.996
12.002	0.757	1.003	7.967	87.989	1.091
12.001	0.849	1.003	8.969	88.296	1.192
12.001	0.942	1.003	9.967	88.462	1.304
12.001	1.036	1.003	10.968	88.528	1.426
12.001	1.130	1.003	11.965	88.530	1.555
12.001	1.225	1.004	12.965	88.465	1.696
12.001	1.322	1.004	13.964	88.355	1.847
12.001	1.419	1.004	14.964	88.204	2.009
12.001	1.517	1.004	15.963	88.021	2.181
12.001	1.616	1.004	16.962	87.808	2.365
12.001	1.716	1.004	17.962	87.574	2.559
12.001	1.817	1.004	18.960	87.319	2.765
12.001	1.919	1.004	19.961	87.049	2.983
12.001	2.022	1.004	20.959	86.756	3.214
12.001	2.126	1.005	21.961	86.454	3.457
12.002	2.231	1.005	22.959	86.136	3.713
12.002	2.338	1.005	23.961	85.793	3.987
12.002	2.446	1.005	24.960	85.446	4.272
12.002	2.555	1.005	25.957	85.085	4.573
12.002	2.665	1.005	26.958	84.715	4.889
12.002	2.777	1.005	27.957	84.331	5.221
12.002	2.890	1.005	28.958	83.937	5.571
12.002	3.004	1.005	29.956	83.538	5.935
12.002	3.120	1.005	30.956	83.120	6.321
12.002	3.237	1.005	31.955	82.693	6.725
12.001	3.357	1.006	32.957	82.251	7.151

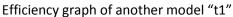
Q

Efficiency data (cont.) (model t3)

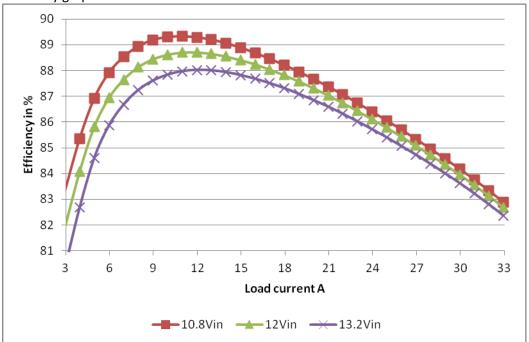
10.8V input with ~1 Meter per second airflow


` '				CC 0/	
Vin V	lin A	Vout	lout A	eff %	loss W
10.804	0.045	1.002	0.000	N/A	0.485
10.803	0.134	1.002	0.964	66.583	0.485
10.803	0.230	1.002	1.965	79.290	0.514
10.803	0.331	1.002	2.963	83.143	0.602
10.803	0.432	1.003	3.966	85.208	0.690
10.803	0.531	1.003	4.964	86.784	0.758
10.803	0.631	1.003	5.963	87.760	0.834
10.803	0.731	1.003	6.962	88.396	0.916
10.803	0.832	1.003	7.961	88.792	1.008
10.803	0.935	1.003	8.963	89.020	1.109
10.803	1.038	1.003	9.961	89.136	1.218
10.803	1.142	1.003	10.962	89.155	1.338
10.803	1.247	1.003	11.960	89.108	1.467
10.803	1.353	1.004	12.961	89.012	1.606
10.803	1.459	1.004	13.959	88.861	1.756
10.803	1.567	1.004	14.960	88.677	1.917
10.803	1.677	1.004	15.961	88.465	2.089
10.803	1.787	1.004	16.959	88.225	2.273
10.803	1.898	1.004	17.960	87.964	2.468
10.803	2.010	1.004	18.958	87.690	2.673
10.803	2.123	1.004	19.959	87.394	2.891
10.803	2.238	1.004	20.956	87.082	3.123
10.803	2.354	1.005	21.958	86.759	3.367
10.803	2.471	1.005	22.957	86.421	3.624
10.803	2.589	1.005	23.958	86.071	3.896
10.803	2.709	1.005	24.957	85.705	4.183
10.803	2.830	1.005	25.955	85.332	4.484
10.803	2.953	1.005	26.957	84.948	4.801
10.803	3.076	1.005	27.956	84.556	5.133
10.803	3.202	1.005	28.958	84.153	5.482
10.803	3.329	1.005	29.955	83.742	5.847
10.803	3.458	1.005	30.954	83.319	6.231
10.803	3.588	1.006	31.952	82.894	6.630
10.803	3.721	1.006	32.954	82.438	7.060
Q					

Efficiency data (cont.) (Model t3)


13.2V input with ~1 Meter per second airflow

Vin V	lin A	Vout	lout A	eff %	loss W
13.202	0.044	1.002	0.000	N/A	0.581
13.202	0.117	1.002	0.966	62.459	0.582
13.202	0.197	1.002	1.968	75.892	0.627
13.202	0.281	1.002	2.966	80.242	0.732
13.202	0.365	1.003	3.969	82.561	0.840
13.202	0.446	1.003	4.967	84.511	0.913
13.202	0.529	1.003	5.967	85.740	0.995
13.202	0.611	1.003	6.965	86.551	1.085
13.202	0.695	1.003	7.965	87.113	1.182
13.202	0.779	1.003	8.967	87.467	1.289
13.202	0.863	1.003	9.965	87.701	1.402
13.202	0.949	1.003	10.965	87.813	1.527
13.202	1.035	1.003	11.963	87.850	1.660
13.202	1.122	1.004	12.963	87.832	1.802
13.202	1.209	1.004	13.961	87.761	1.954
13.202	1.298	1.004	14.962	87.640	2.118
13.201	1.387	1.004	15.962	87.479	2.293
13.201	1.478	1.004	16.960	87.285	2.480
13.201	1.569	1.004	17.962	87.079	2.676
13.201	1.661	1.004	18.960	86.846	2.884
13.201	1.754	1.004	19.960	86.595	3.103
13.201	1.847	1.004	20.957	86.322	3.336
13.201	1.942	1.005	21.960	86.035	3.581
13.201	2.038	1.005	22.958	85.734	3.838
13.201	2.135	1.005	23.958	85.407	4.113
13.201	2.233	1.005	24.958	85.074	4.400
13.201	2.332	1.005	25.956	84.722	4.704
13.201	2.433	1.005	26.957	84.364	5.021
13.201	2.534	1.005	27.956	83.991	5.356
13.201	2.637	1.005	28.957	83.610	5.706
13.201	2.741	1.005	29.956	83.220	6.072
13.201	2.847	1.005	30.957	82.813	6.459
13.201	2.954	1.005	31.954	82.397	6.864
13.201	3.063	1.006	32.956	81.961	7.293
Q					



Load current A

-10.8Vin →-12Vin →-13.2Vin

Q

Loss savings of model t1 vs. model t3 follow very much as if the resistance path for the output current is 200uOhms less.

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.