

SPICE Modeling Report

BD9060HFP-C 1ch Step-Down Switching Regulator

In this report, the characteristics that can be confirmed by the simulation using the SPICE model of the regulator IC BD9060HFP-C will be described.

Simulation Environment

Circuit Simulator : PSpice / Cadence Design System, Inc.

■ Version Information : 17.2-2016

■ OS Information : Windows 10 64-bit Edition

SPICE MODEL

■ Library File Name : BD9060.lib

■ Subcircuit File Name : BD9060HFP_Tran (Transient Analysis SPICE MODEL)
BD9060HFP_Average (AC Analysis SPICE MODEL)

Revision : 2.0

Terminal Information

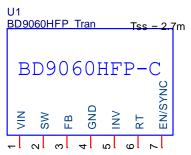


Table 1. Pin Table

Pin No.	Pin Name
1	VIN
2	SW
3	FB
4	GND
5	INV
6	RT
7	EN/SYNC

Figure 1. Symbol of BD9060HFP_Tran

(Note 1) Terminal information for BD9060HFP_Average is same like the above.

■ Model Parameters

Table 2. Model Parameter Table

Parameter	Default Value Description		
BD9060HFP_Tra	an		
T _{SS}	2.7m	Please set any Soft Start Time. (100µ < Tss < 5m)	
BD9060HFP_Av	verage		
F _{SW}	300k	Switching frequency is adjustable (50kHz to 500kHz). Please set the switching frequency.	
VIN	13.2	Please set Input Voltage. This is used for calculation of dead time component depend on switching operation.	
VO	5	Please set Output Voltage. This is used for calculation of dead time component depend on switching operation.	

(Note 2) This model is not compatible with the influence of ambient temperature.

(Note 3) This model is not compatible with the external synchronization function.

(Note 4) Please use the simulation results only as a design guide and the data reported herein is not a guaranteed value.
Moreover, the characteristics which are not included in the report may change depending on the actual board design and ROHM strongly recommend to double check those characteristics with actual board where the chips will be mounted on.

©2017 ROHM Co., Ltd.

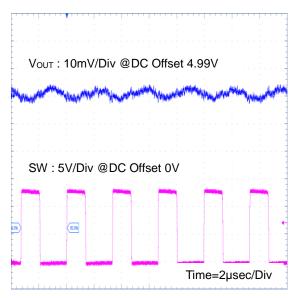
No. 60AN056E REV.001

Aug.2017

Verifiable Characteristics

Electri	cal C	Characteristics (vs. Datasheet)	
		stics on Board (vs. Measured Waveform)	
>	BD	9060HFP_Tran	
	\checkmark	Output Ripple Voltage / Switching Frequency	4
		Inductor Ripple Current	
		Load Response	
		Line Response	
	\checkmark	Switching Frequency Setting Resistance	8
>		9060HFP_Average	
		Frequency Characteristic	q

Electrical Characteristics (vs. Datasheet)


Table 3. Electrical Characteristics Comparison

(Unless otherwise specified, Ta=27°C, V_{IN}=13.2V, V_{EN / SYNC}=5V.)

Parameter	Modeled	Design	Nalue	Unit	Error	Condition
i arametei	(Note1)	Datasheet	SPICE	Offic	LIIOI	
Standby Circuit Current	✓	0	0	μΑ	0.0%	V _{EN/SYNC} =0V, Ta=-40°C to +105°C
Circuit Current	X	3.74	4.00	mA	-	I_0 =0A, RT=51k Ω , V_{INV} =0.7V
[SW Block]						
POWER MOS FET ON Resistance	√	0.3	0.3	Ω	0.0%	I _{SW} =50mA
Operating Output Current Of Overcurrent Protection	√	4	4	А	0.0%	
Output Leak Current	√	0	0	μA	0.0%	V _{IN} =35V, V _{EN/SYNC} =0V, Ta=-40°C to +105°C
[Error Amp Block]						
Reference Voltage 1	√	0.800	0.800	V	0.0%	V _{FB} =V _{INV}
Reference Voltage 2	√	0.800	0.800	V	0.0%	V _{FB} =V _{INV} , V _{IN} =5V to 35V
Reference Voltage Input Regulation	Х	0.5	0.0	%	-	V _{IN} =5V to 35V
Input Bias Current	√	-	0	μA	-	V _{INV} =0.6V
Maximum FB Voltage	√	2.5	2.5	V	0.0%	V _{INV} =0V
Minimum FB Voltage	√	0.51	0.51	V	0.0%	V _{INV} =2V
FB Sink Current	Х	-1.23	-0.98	mA	-	V _{FB} =1V, V _{INV} =1V
FB Source Current	Х	6.3	3.0	mA	-	V _{FB} =1V, V _{INV} =0.6V
Soft Start Time	√	2.7	2.7	ms	0.0%	
[Oscillator Block]						
Oscillating Frequency	\	300	291	kHz	3.0%	RT=51kΩ
Frequency Input Regulation	Х	0.5	-	%	-	V _{IN} =5V to 35V
[Enable/Sync Input Block]						
Output ON Voltage	√	-	1.5	V	-	V _{EN/SYNC} Sweep Up
Output OFF Voltage	√	-	1.5	V	-	V _{EN/SYNC} Sweep Down
Sink Current	√	19.2	19.0	μA	1.0%	

(Note 1) \lor : Model available (supported), X: Model not available" (not supported).

Characteristic on Board (vs. Measured Waveform) Simulation Setting Type: Transient 1. Output Ripple Voltage / Switching Frequency Run Time: 5msec 9060HFP_Tran (Maximum Step Size: 20nsec) BD9060HFP-ESR3 100p C1 **PARAMETERS** 33u ESR2 DRB095BM-40 Figure 2. Simulation Schematic 1

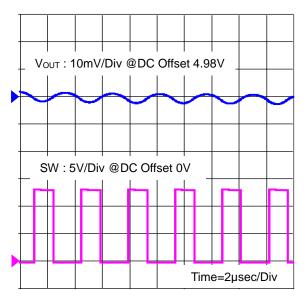
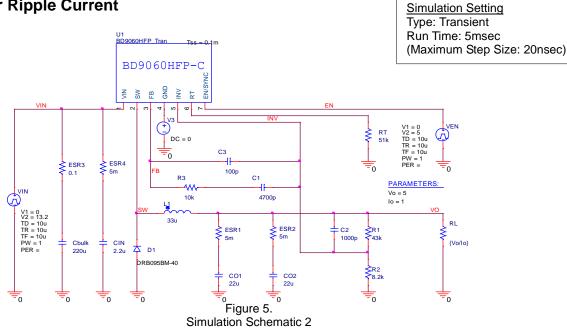
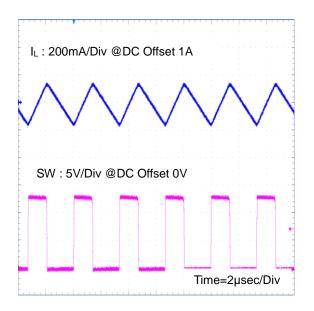


Figure 3.
Output Ripple Voltage / Switching Frequency
(Measured Waveform)

Figure 4.
Output Ripple Voltage / Switching Frequency (SPICE Simulation)

Table 4. Characteristics Comparison


(Unless otherwise specified, Ta=27°C, VIN=13.2V, VEN/SYNC=5V.)


Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
Output Ripple Voltage	8.5	3.8	mV	55.3%	-
Switching Frequency	300	291	kHz	3.0%	R _{RT} =51kΩ

(Note 1) The above data is based on a specific sample and it is not a guaranteed value.

(Note 2) These characteristics depend on some dynamic characteristics of external components, input signal speed, PCB pattern and mounting condition of each on-board parts.

2. Inductor Ripple Current

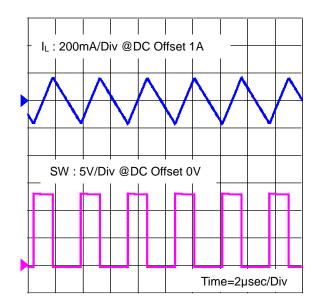
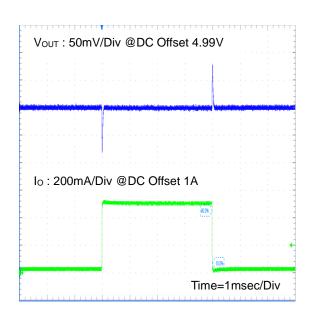


Figure 6. Inductor Ripple Current (Measured Waveform)

Figure 7. Inductor Ripple Current (SPICE Simulation)

Table 5. Characteristics Comparison

(Unless otherwise specified, Ta=27°C, V_{IN}=13.2V, V_{EN / SYNC}=5V.)


Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
Inductor Ripple Current	323	339	mA	5.0%	-

(Note 1) The above data is based on a specific sample and it is not a guaranteed value.

(Note 2) These characteristics depend on some dynamic characteristics of external components, input signal speed, PCB pattern and mounting condition of each on-board parts.

Simulation Setting Type: Transient Run Time: 11msec (Maximum Step Size: 20nsec)

Figure 8. Simulation Schematic 3

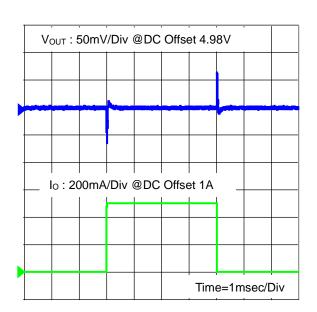
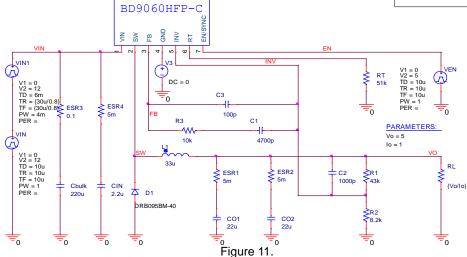


Figure 9. Load Response (Measured Waveform)

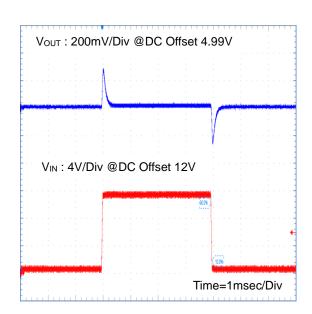
Figure 10. Load Response (SPICE Simulation)

Table 6. Characteristics Comparison

(Unless otherwise specified, Ta=27°C, V_{IN}=13.2V, V_{EN/SYNC}=5V.)


Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
Overshoot	78	67	mV	14.1%	louт:1.0A to 1.5A (Tr=10µsec)
Undershoot	81	68	mV	16.0%	Іоит:1.5A to 1.0A (Tf=10µsec)

(Note 1) The above data is based on a specific sample and it is not a guaranteed value.


(Note 2) These characteristics depend on some dynamic characteristics of external components, input signal speed, PCB pattern and mounting condition of each on-board parts.

(Note 3) Tr/Tf is defined as 10% to 90% of the waveform.

4. Line Response Simulation Setting Type: Transient Run Time: 11msec (Maximum Step Size: 20nsec)

Simulation Schematic 4

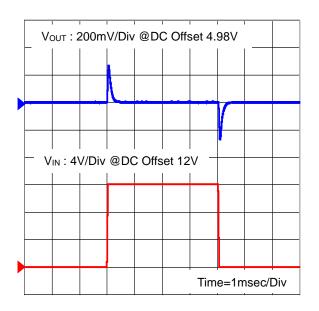


Figure 12. Line Response (Measured Waveform)

Figure 13. Line Response (SPICE Simulation)

Table 7. Characteristics Comparison

(Unless otherwise specified, Ta=27°C, V_{IN}=13.2V, V_{EN/SYNC}=5V.)

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
Overshoot	275	266	mV	3.3%	V _{IN} :12V to 24V (Tr=30µsec)
Undershoot	274	271	mV	1.1%	V _{IN} :24V to 12V (Tf=30µsec)

(Note 1) The above data is based on a specific sample and it is not a guaranteed value.

(Note 2) These characteristics depend on some dynamic characteristics of external components, input signal speed,

PCB pattern and mounting condition of each on-board parts.

(Note 3) Tr/Tf is defined as 10% to 90% of the waveform.

5. Switching Frequency Setting Resistance Simulation Setting Type: Transient, Parametric Sweep U1 BD9060HFP_Tran Run Time: 5msec (Maximum Step Size: 20nsec) BD9060HFP-RT {RT} **≧** ESR3 100p C1 **PARAMETERS** 4700p 33u ESR2 {Vo/Io} D1 Figure 14. Simulation Schematic 5 500 450 Oscillating Frequency:Fosc [kHz] Oscillating Frequency:Fosc [Hz] 400 350 300 250 200 150 100 100F 50 0 50 100 150 200 250 300

Table 8. Characteristics Comparison

(Unless otherwise specified, Ta=27°C, VIN=13.2V, VEN/SYNC=5V.)

OSCILATION FREQUENCY SETTING Resistance : RT[kΩ]

Figure 15.

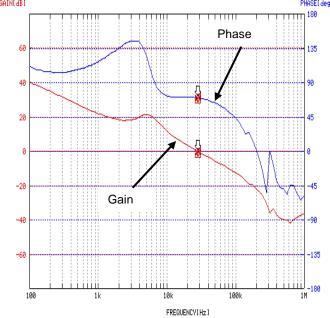
Switching Frequency Setting Resistance

(Measured Waveform)

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
Switching Frequency	300	291	kHz	3.0%	R _{RT} =51kΩ

OSCILATION FREQUENCY SETTING Resistance : $RT[\Omega]$

Figure 16.


Switching Frequency Setting Resistance

(SPICE Simulation)

(Note 1) The above data is based on a specific sample and it is not a guaranteed value.

(Note 2) These characteristics depend on some dynamic characteristics of external components, input signal speed, PCB pattern and mounting condition of each on-board parts.

6. Frequency Characteristic Simulation Setting Type: AC Frequency Range: 100Hz to 1MHz (Points/Decade: 20) BD9060HFP RT 51k DC = 0SESR3 100p C1 PARAMETERS: 33u ESR2 C2 1000p D1 ORB095BM-40 Figure 17. Simulation Schematic 6 PHASE[deg] GAIN[dB]

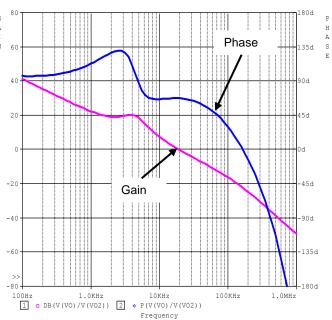


Figure 18.
Frequency Characteristic (Measured Waveform)

Figure 19.
Frequency Characteristic (SPICE Simulation)

Table 9. Characteristics Comparison

(Unless otherwise specified, Ta=27°C, VIN=13.2V, VEN/SYNC=5V.)

Parameter	Measured Result	SPICE Simulation Result	Unit	Error	Condition
Phase Margin	69.8	66.8	degree	4.3%	At Gain = 0dB
Gain Margin	-23.0	-22.5	dB	2.2%	At Gain = 0degree
Crossover Frequency	28.2	18.9	kHz	33.0%	At Gain = 0dB

(Note 1) The above data is based on a specific sample and it is not a guaranteed value.

(Note 2) These characteristics depend on some dynamic characteristics of external components, input signal speed, PCB pattern and mounting condition of each on-board parts.

Revision History

Date	Revision	Changes
Aug.2017	001	New Release

©2017 ROHM Co., Ltd. No. 60AN056E REV.001 Aug.2017

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/